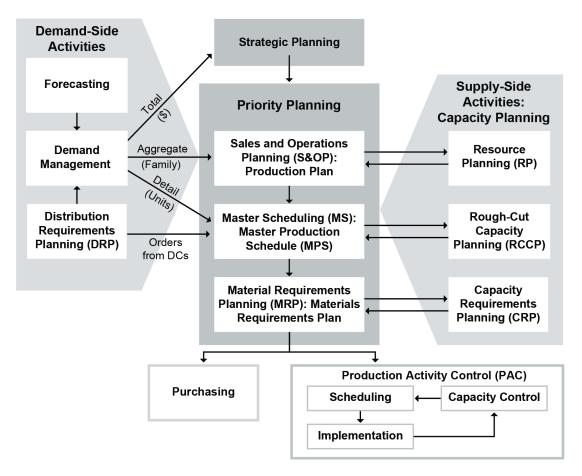


MODULE 4: INTERNAL OPERATIONS AND INVENTORY

Section A: Planning Operations

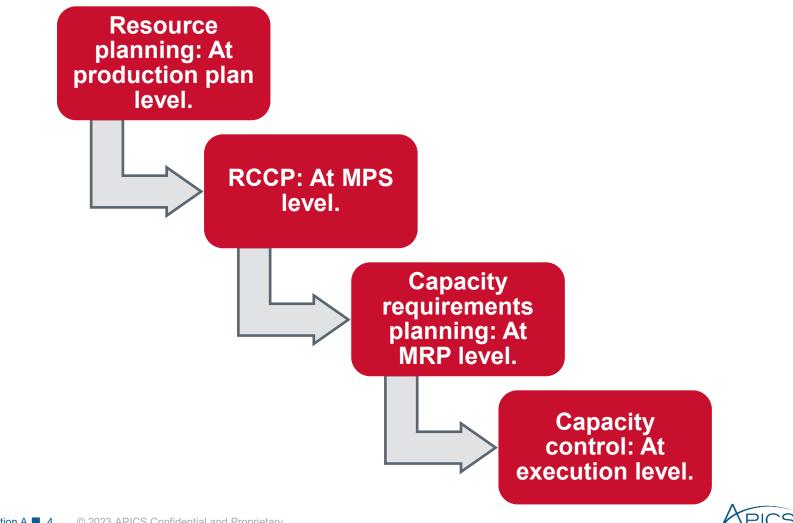
Module 4, Section A

Section A Introduction


Section A Key Processes:

- Plan operations.
 - Develop master schedule.
 - Determine material requirements.

- **Section A Topics:**
- Topic 1: Planning Operations
- Topic 2: Materials and Inventory


Manufacturing Planning and Control

Topic 1: Planning Operations

Stages of Verifying Capacity

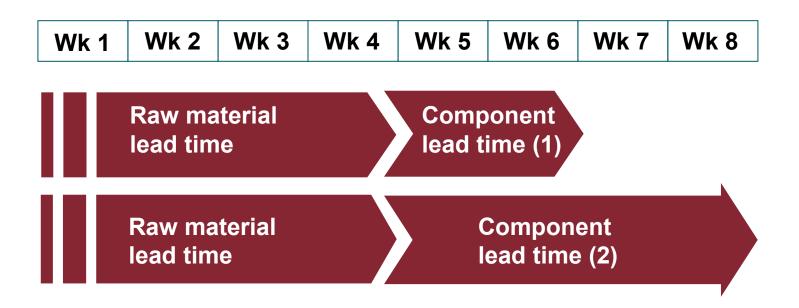
Topic 1: Planning Operations

Master Scheduling Grid and Time Fences

Period	1	2	3	4	5	6	7	8	9	10
Forecast	20	22	21	25	24	23	21	21	25	25
Customer orders	19	17	15	11	9	5	2	1	0	0
Project available balance (PAB) 50	31	14	49	24	0	27	6	35	10	35
Available-to-promise (ATP)	14		15			43		49		
Master production schedule (MPS)			50			50		50		50
		_	↓ Dema ne Fe					↓ Planr me F	-	

Purposes of the Master Production Schedule

- Provide sales-operations "contract."
 - -Assure sales force of product availability.
 - -Assure operations of sales force commitment.
- Balance supply with demand for:
 - -Low inventory costs
 - Fewer stockouts
 - More efficient production.



Weekly Dates for Specific Products

Months	July				August					
Aggregate production plan (S&OP)	1,000					1,2	200			
Weeks	1	2	3	4	5	6	7	8		
MPS: Weekly produc	ction o	f speci	fic prod	ducts						
LX30—30-ppm	50	50	50	75	75	75	50	100		
LX21—21-pp	75	25	100	75	100	100	100	100		
LX50—15-pp	50	150	150	150	75	125	150	150		

Planning Horizon

- Amount of time plan extends into future
- At least equal to cumulative lead time for product

Projected Available Balance (PAB)

PAB Prior to DTF = Prior Period PAB + MPS – Customer Orders Period 1 PAB = 50 Units + 0 Units – 19 Units = 31 Units

PAB After DTF = Prior Period PAB + MPS - > of Forecast or Customer Orders Period 6 PAB = 0 Units + 50 Units - 23 Units = 27 Units

	-	Frozen Zone				Slush Zone	-	Liquid Zone		
Period	1	2	3	4	5	6	7	8	9	10
Forecast	20	22	21	25	24	23	21	21	25	25
Customer orders		17	15	11	9	5	2	1	0	0
Project available balance (PAB) 50	31	14	49	24	0	27	6	35	10	35
Available-to-promise (ATP)										
Master production schedule (MPS)			50			50		50		50
	Demano Time Fen							-	•	

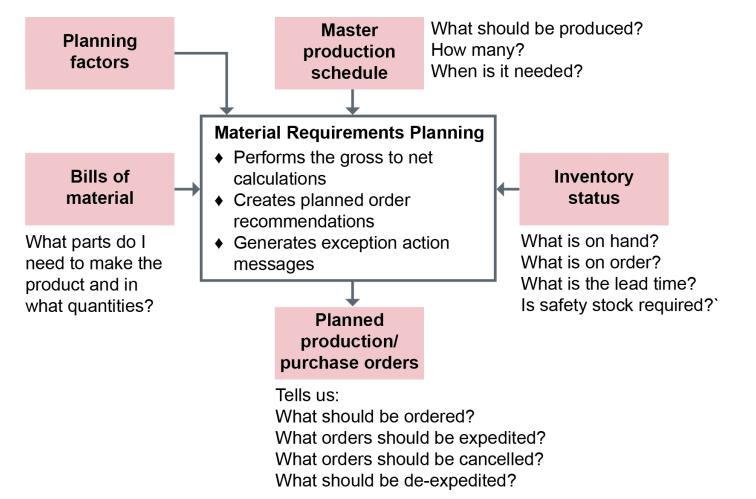
Available-to-Promise (ATP)

First Period ATP = Inventory + MPS – \sum Customer Orders Before Next MPS Period 1 ATP = 50 Units + 0 Units – (19 Units + 17 Units) = 14 Units

Following Period ATP = MPS – \sum Customer Orders Before Next MPS Period 3 ATP = 50 Units – (15 Units + 11 Units + 9 Units) = 15 Units

		Frozen Zone			Slushy Zone					uid ne
Period	1	2	3	4	5	6	7	8	9	10
Forecast	20	22	21	25	24	23	21	21	25	25
Customer orders	19	17	15	11	9	5	2	1	0	0
Project available balance (PAB) 50		14	49	24	0	27	6	35	10	35
Available-to-promise (ATP)	14		15			43		49		50
Master production schedule (MPS)			50			50		50		50
			Dema me Fo						•)

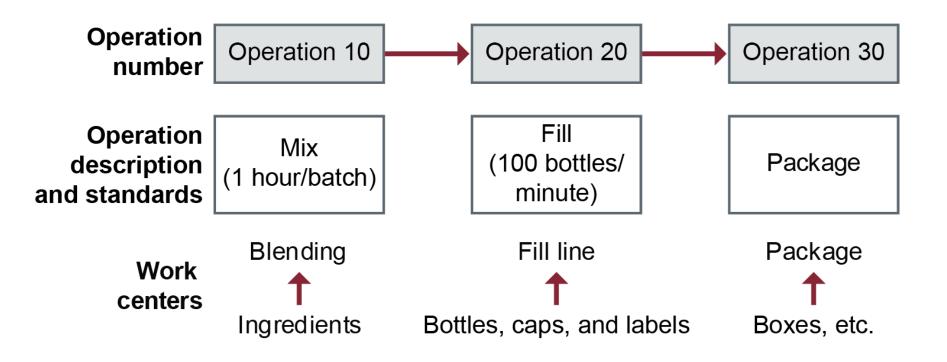
Commitment Decision Points


	-	roze Zone	-			Slushy Zone			Liquid Zone
Week	1	2	3	4	4 5 15 16		Months $5 - 18 + \longrightarrow$		
Demand co in the froze treated as purchase of terms of vo timing.	en zor a firm order	ne is n both		in th is tr con in th orga	ne slu reateo nmitm nat qu aniza	commu ishy zoi d as a nent to p uantity, tion car riority).	ne ourch but	ase	 (Duration of Remainder of Demand Plan) Demand communicated in the liquid zone is treated as guidance for the supplier. It is not a commitment to buy.
		Fir ommi cisio	tmer					•	

Materials Requirements Planning

- MRP plans production/purchase orders for dependent demand items only.
- Dependent demand doesn't require estimation, only calculation.
- Some items can have both independent and dependent demand.

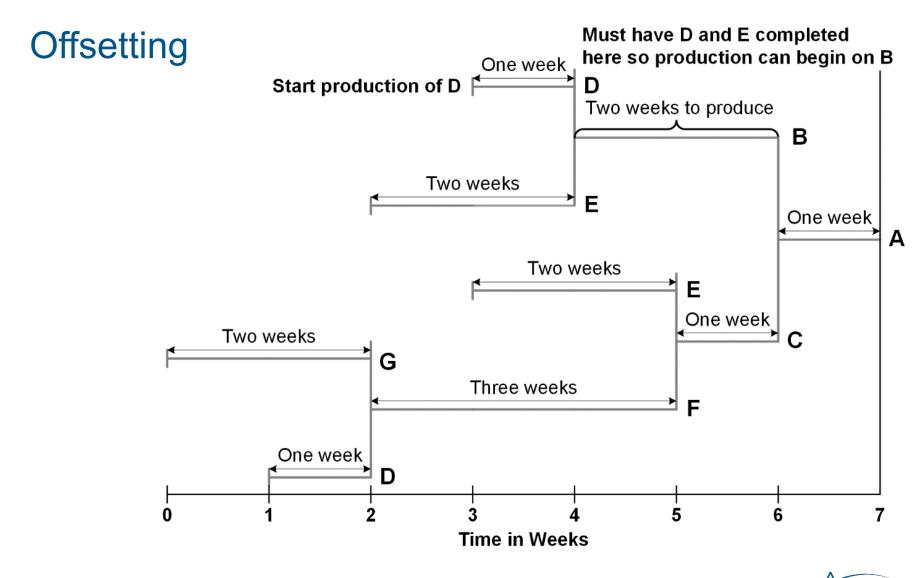
Materials Requirements Planning


Bill of Material

- Complete list of components for a manufactured or assembled item.
- Multilevel BOMs can be "exploded" or expanded to drill down into details.
- Modular (planning) BOMs are used for planning modular components.

Multilevel Bill of Material				
Model: JTE-5000 Plant: 3000 Validity Date: 9/13/XX				
roduct Structure	Assembly	BOM Status	Short Text	Quantity
JTE-5000 3000 1 01			1 Motor, Electric 1/2 HP	
 ▼ 0010 L JTE-4001 ▼ JTE-4001 3000 1 01 	*		Stator Assembly 1 Stator Assembly	1
 ▼ 0010 L JTE-2002 ▶ JTE-2002 3000 	* 1 01		Stator Leads 1 Stator Leads	3
0010 L JTE-100			Terminal-Flag	1
0020 L JTE-100	2 *		Wire-Stranded	1
▼ 0020 L JTE-3001 ► JTE-3001 3000			Stator Wire Coils 1 Stator Wire Coils	1
0010 L JTE-200			Wire-Aluminum	25
▼ 0030 L JTE-3002 ▶ JTE-3002 3000	*		Stator Blank 1 Stator Blank	60
0010 L JTE-2003	-		Steel, Coiled	1
0020 L JTE-300 0040 L JTE-1004	4		Rotor Blank Varnish	1– 0.001
▼ 0020 L JTE-4002 ▼ JTE-4002 3000 1 01	*		Rotor Assembly 1 Rotor Assembly	1
▼ 0010 L JTE-3003 ▶ JTE-3003 3000	*		Shaft Rotor 1 Shaft Rotor	1
0020 L JTE-3004			Rotor Blank	60
0030 L JTE-3005			Aluminum	1
 0030 L JTE-4003 JTE-4003 3000 1 01 	*		End Bell-Top 1 End Bell-Top	1
0010 L JTE-3005 0020 L JTE-4004			Aluminum End Bell-Bottom	1 1—
0040 L JTE-4004			End Bell-Bottom	1
0050 L JTE-4005			Screw-6", Motor Assembly	4
1				>

Routing File



Lot-for-Lot and FOQ Replenishment

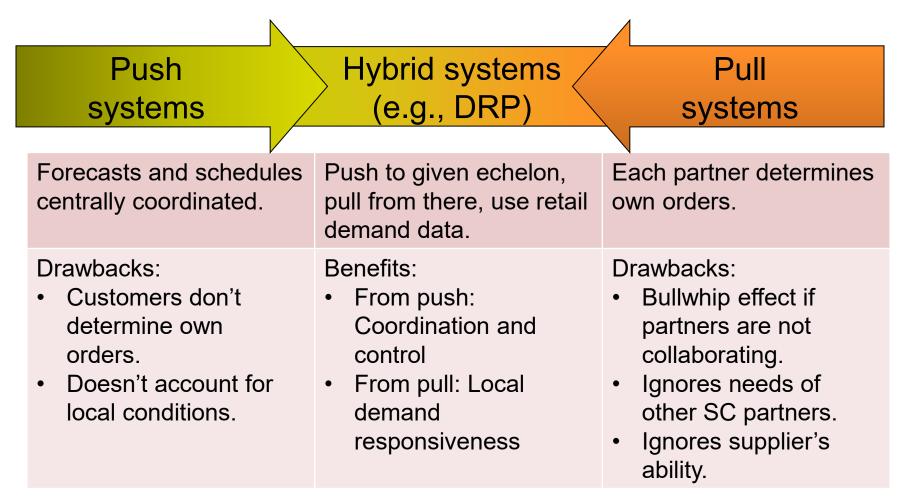
Lot-for-lot: Exact number needed for production is number to make/buy; it is often used for dependent demand items.

MRP Lot-Sizing	Prob	oler	n: Lo	ot-for	-Lot	Tech	niqu	e			
Week		1	2	3	4	5	6	7	8	9	10
Gross Requirements	3	35	30	40		10	40	30		30	55
Scheduled Receipts											
Projected Available Balance (PAB) 3	5 (0	0	0	0	0	0	0	0	0	0
Net Requirements			30	40		10	40	30		30	55
Planned Order Receipts			30	40		10	40	30		30	55
Planned Order Releases	3	30	40		10	40	30		30	55	

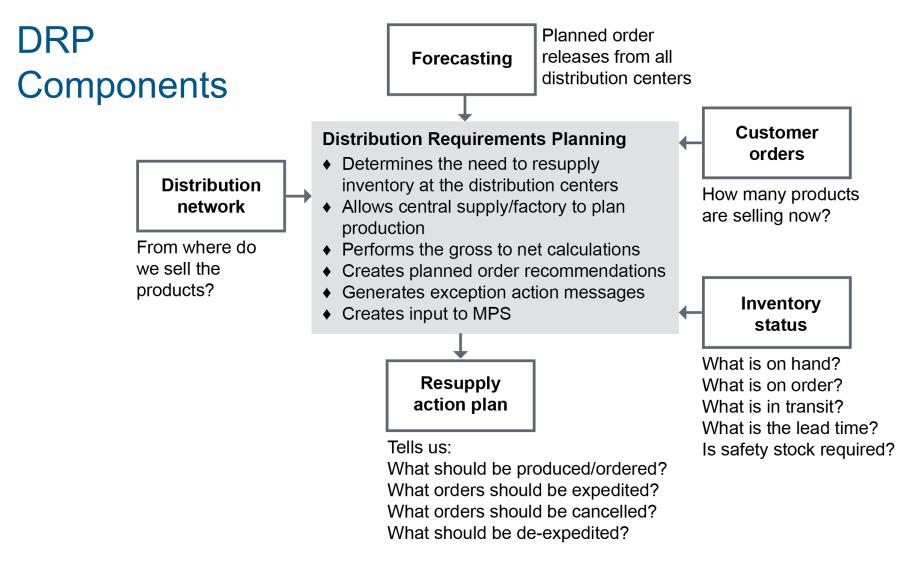
Fixed order quantity (FOQ): Used in MRP when operations require fixed batch sizes and order quantities.

PICS

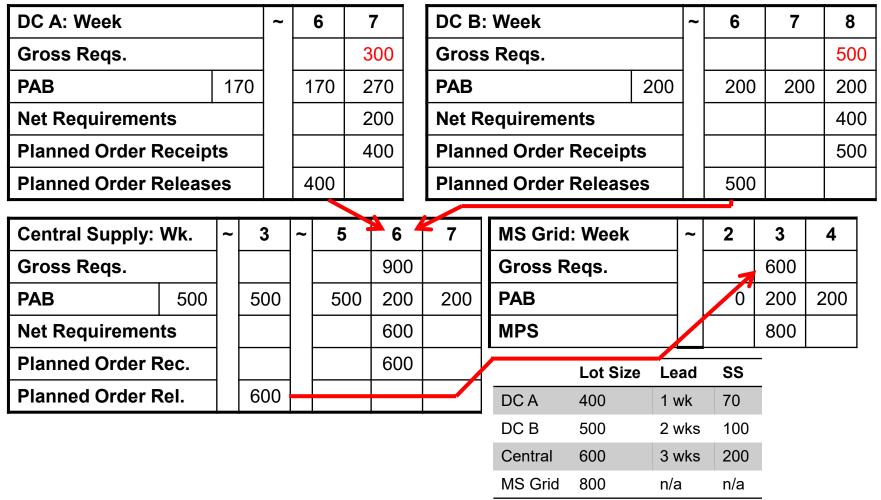
Managing MRP


- Avoiding system "nervousness"
 - Net change (not plan regeneration)
 - Time fences (rescheduling only with authorization)
 - Pegging components to end products in bill of material
- Is nervousness a red flag?
- Reconciling JIT/lean with MRP
 - Small bucket or bucketless
 - Balanced flow

Evolution of MRP Software


MRP	Closed-Loop MRP	MRP II
 Automates BOM Improves on-time delivery; frees up time to plan Assumes infinite capacity—hence, impossible schedules 	 Refinement of MRP: provides feedback on capacity available Tradeoff: installation and training costs 	 Includes financials (crosses boundaries) Makes capacity more visible Translates detailed information to financial statements Helps realign with plan

Distribution Requirements Planning



DRP Logic

SECTION B: CAPACITY AND PRODUCTION ACTIVITY CONTROL

Module 4, Section B

Section B Introduction

Section B Key Process:

Evaluate capacity requirements.

Section B Topics:

- Topic 1: Capacity
- Topic 2: Production Activity Control

Capacity Management, Planning, and Control

Capacity Management

Balance demand and supply for cost-effective service.

Capacity Planning

Identify and deploy necessary resources at all planning levels.

Capacity Control

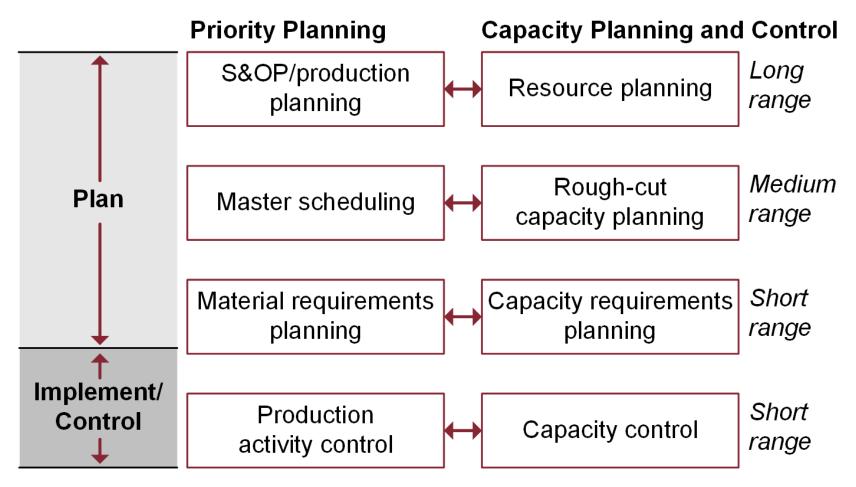
Monitor daily input/output and balance with plan.

Capacity Objectives

Too much

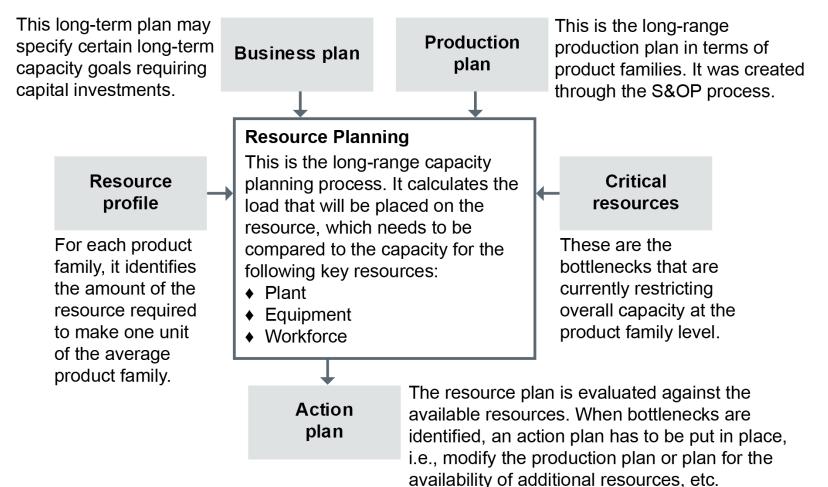
- Supply > demand
- Layoffs, idle machines, unused storage
- Excess inventory

Just right

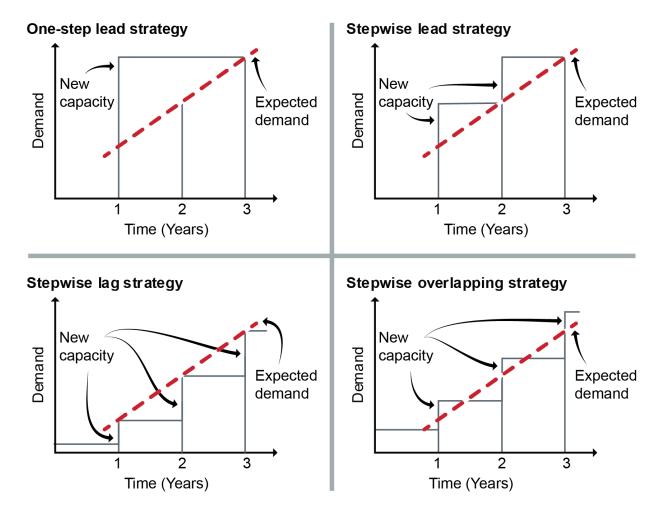

- On-time fulfillment
- Quality items
- Optimal use of resources

Too little

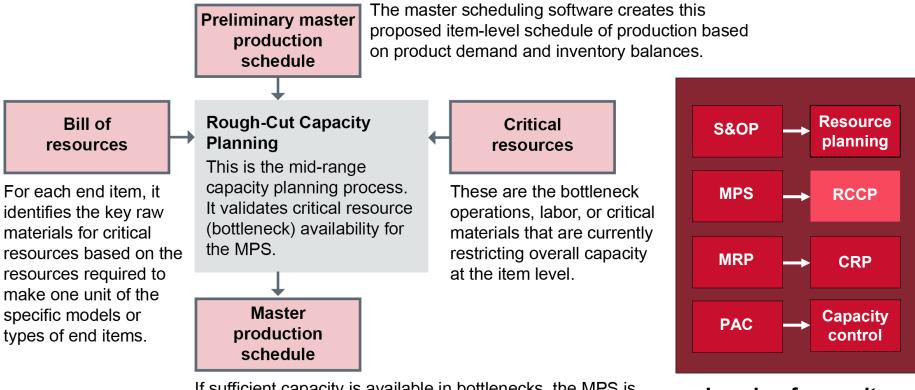
- Demand > supply
- Stockouts, broken orders, overtime, temps, work shifts, etc.



Planning Horizons


Resource Planning

Module 4, Section B 29


Four Ways to Stage Capacity Growth

© 2023 APICS Confidential and Proprietary

Rough-Cut Capacity Planning

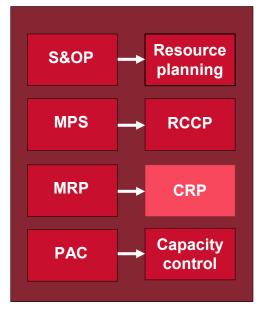
If sufficient capacity is available in bottlenecks, the MPS is considered workable. If not, the master scheduler explores ways to increase capacity (e.g., overtime, use of alternate work centers, contracting out work). If these are not possible/ economical, the master scheduler will revise the MPS to be feasible.

Levels of capacity planning and control

Rough-Cut Capacity Planning

- Process of converting MPS into key resource requirements
- Comparison of load vs. available or demonstrated capacity for each key resource
- Medium-term
- Bottlenecks, gateway work centers, critical suppliers only

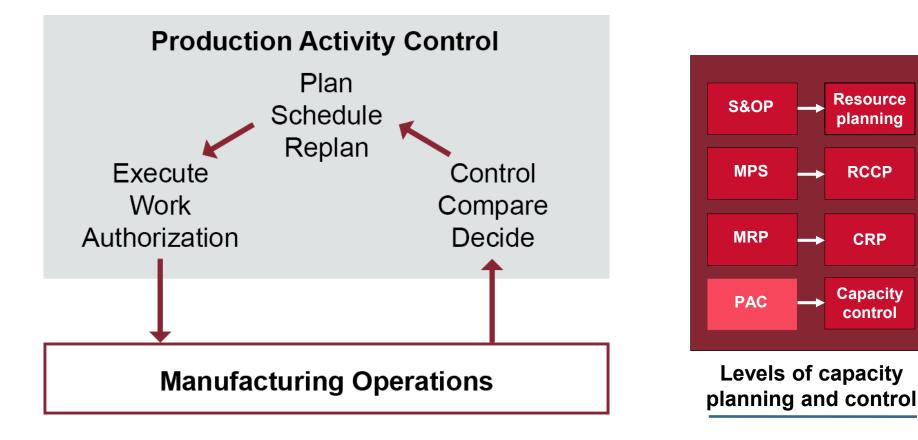
Capacity Requirements Planning (CRP)


CRP takes place at level of MRP.

Assigns each facility, work center, and operation a load and does load leveling.

Steps to determine site capacity:

- Check open order file.
 Check planned order releases.
 Check routing file
- 3. Check routing file.
- 4. Check work center file.


Output: adjustment of load or capacity (or both) to meet plan, as required.

Levels of capacity planning and control

Production Activity Control (PAC)

Resource

planning

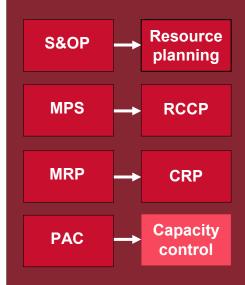
RCCP

CRP

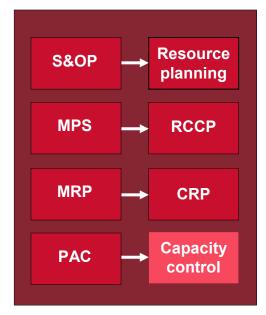
Capacity

control

Measuring Capacity


Available Time	=	Hours of Operation	×	Numbers of Workers or Equipment				
Utilization =	=	Hours Worked	•	Available Hours	×	100		
Efficiency	=	Standard Hours of Work	< <u>*</u>	Hours Worked	×	100		
Rated Capacity	=	Available Time	e ×	Utilization	× Effi	ciency		
Demonstrated Ca	apaci	ty =	Outp	out for n Per n	iods	_		

When Load and Capacity Are Out of Balance


- Change capacity to match load:
 - -Add or reduce work hours.
 - Hire or lay off workers.
 - Shift workers to understaffed sites.
 - Change routings.
 - Hire subcontractors or temporary workers.
- Change load to match capacity:
 - Change lot sizes or schedule.

Levels of capacity planning and control

Continuous Improvement of PAC

- Concentrate on constraints.
- Use visual signals.
- Develop pull partnerships.
- Learn to be lean.

Levels of capacity planning and control

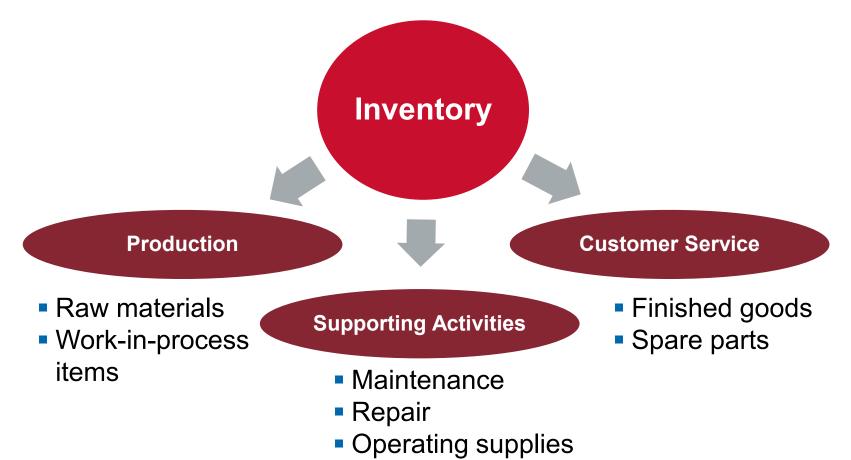
SECTION C: INVENTORY

Module 4, Section C

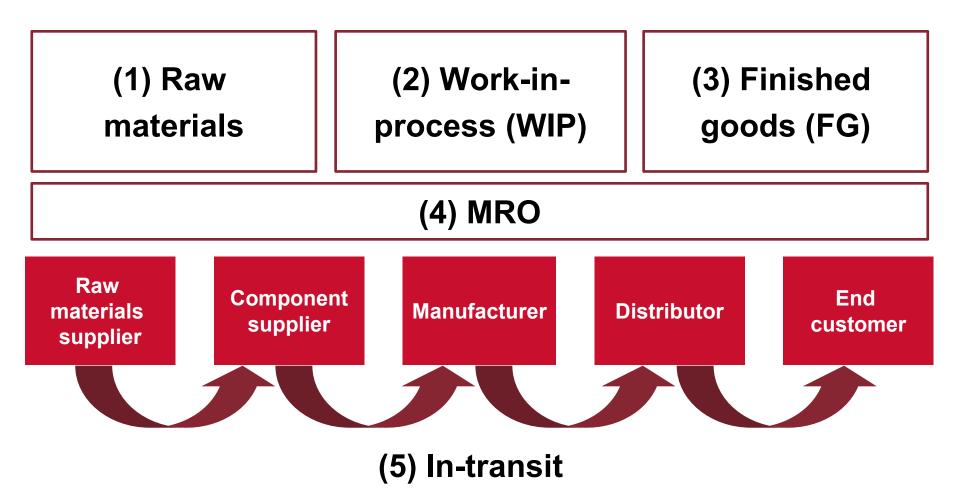
Section C Introduction

Section C Key Processes:

- Manage inventory.
 - Align inventory requirements with demand.
 - Manage MRO supplies.
 - Develop replenishment strategy.
 - Manage product traceability and chain of custody.
 - Define and execute physical inventory and cycle counting.
 - Manage product disposition and obsolescence.


Section C Topics:

- Topic 1: Inventory
- Topic 2: Replenishment Strategies
- Topic 3: Traceability, Accuracy, and Disposition


Topic 1: Inventory

The Need for Inventory

Types of Inventory

Why Have Inventory?

Inventory Functions Cycle stock/lot size inventory

Anticipation inventory

Buffer inventory

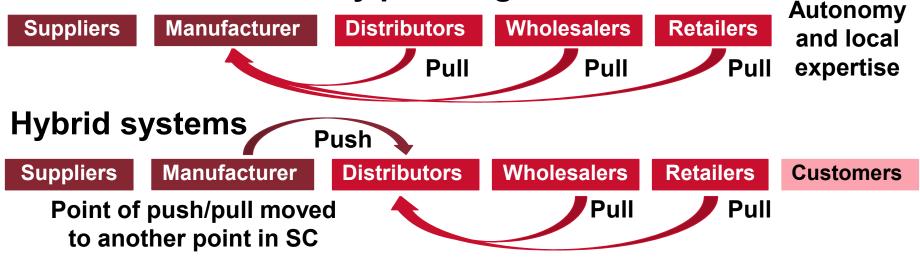
Safety stock

Hedge inventory

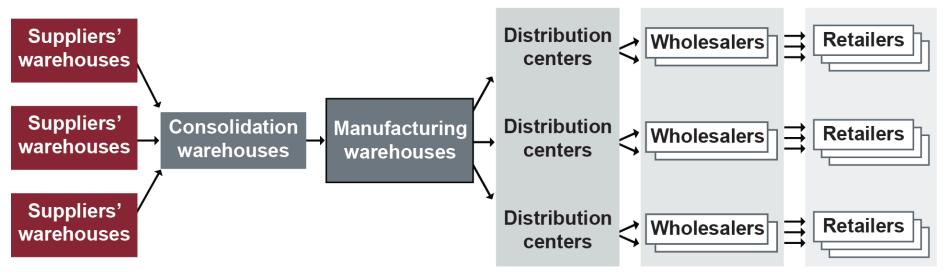
Decoupling

Topic 1: Inventory

Inventory Costs


- Acquisition costs: order quantity × unit cost
- Landed costs: product cost plus logistics costs
- Carrying (holding) costs:
 - Storage costs: rent, depreciation, operating cost, taxes, material-handling expenses, equipment leases, power, operating costs
 - Capital costs: interest, financing, payments to creditors and investors
 - Risk costs: insurance, inventory value reductions and writeoffs

Topic 1: Inventory


Inventory Planning

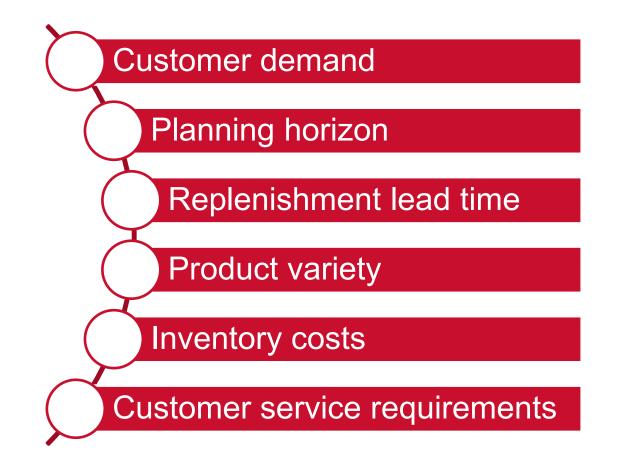
Decentralized inventory planning

Echelons and Echelon Inventory

- Echelons
 - Add costs.
 - Are a buffer for later echelons.
 - May provide consolidation or break-bulk to reduce total inventory/costs.

- Echelon inventory
 - Considers inventory at a node to include all inventory at that echelon plus all inventory at later points in SC and in transit.
 - Aggregates demand for more accurate order calculation.

Inventory Management Roles


Purchasing and materials management: adequate raw materials at low inventory cost

Manufacturing and finance: efficient and low-cost production balanced against low inventory cost

Sales and marketing: sufficient inventory to meet customer delivery requests and service levels

Topic 1: Inventory

Factors Influencing Inventory Policies

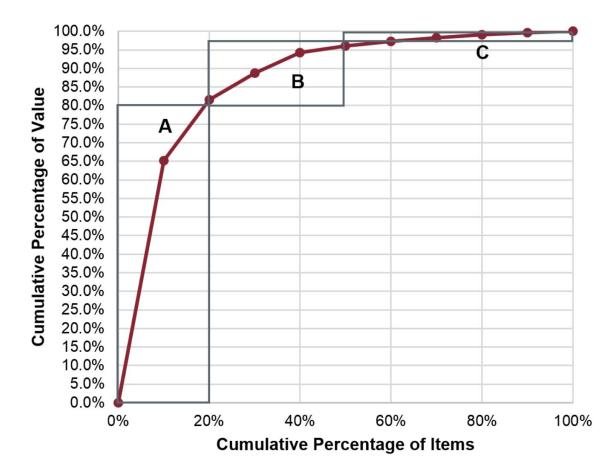
Aggregate Inventory Management

Aggregate Inventory Management Objectives

Support organizational strategy and operations.

Support financial objectives.

Balance:


- Customer service
- Operations efficiency
- Inventory investment cost objectives.

Ways to Aggregate Inventory

- Demand pattern
- Production process
- Stage of production flow
- Relative value to organization
- Product or SKU family or type
- Distribution pattern

ABC Inventory Classification: Pareto Analysis

Topic 1: Inventory

Item Inventory Management

- Goal is to enable planners to translate strategic inventory goals into measurable results (proper production and distribution of each SKU).
- Inventory rules
 - -When to order inventory
 - How to determine order size per order
 - Relative importance of each inventory item
 - Inventory control procedures for individual items

Effects of Inventory on Financial Statements

Balance Sheet	Income Statement	Cash Flows
 Unsold inventory is current asset. 	 COGS: Product expenses booked 	 Decrease in inventory increases cash
 Only profit margin 	when units sold.	position.
portion contributes to net income when sold.	 Operating expenses: Period expenses booked when 	 Inventory write-offs reduce owners' equity and may require
 Can determine average inventory from balance sheet. 	 incurred. Reducing costs is more effective than increasing sales volume. 	reducing debts to maintain covenants.

Balance Sheet for Two Years (Assets)

What the	BALANCE SHEETS	Statement of	In Millions (000,000)		
organization	December 31,	financial value at	Year 2	Year 1	
owns 🗸	Assets	a point in time			
Assets expected	Current Assets	(end of year)			
to be converted to	Cash and Cash Equ	valents	\$96.5	\$56.3	
cash within one	Inventory	59.9	60.4		
year	Accounts Receivable	48.4	44.3		
Long-term assets	Total Current Assets		204.9	161.1	
not easily	Fixed Assets				
converted to cash	Gross Property, Plar	70.0	60.0		
Amounts owed	Less: Accumulated Depreciation		12.1	7.5	
to others	Net Property, Plant,	57.9	52.5		
Total Assets			→ \$262.8	\$213.6	

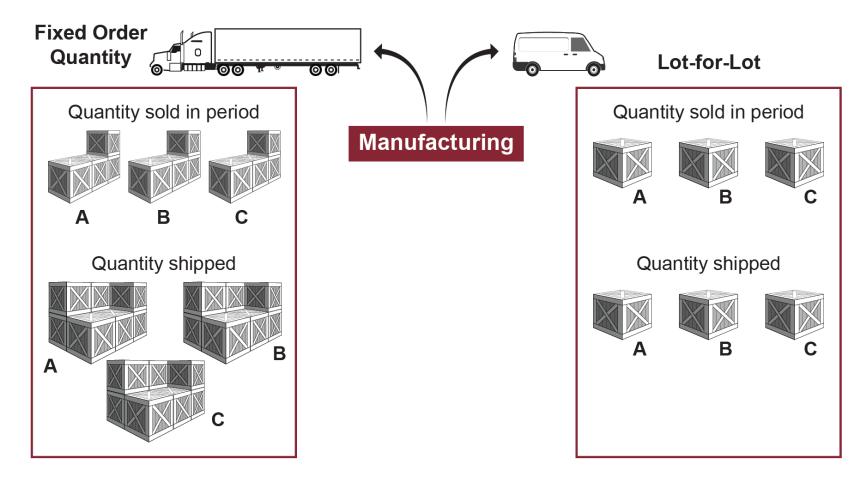
Balance Sheet for Two Years (Liabilities)

	Total Assets	Ι	→ \$262.8	\$213.6
Amounts owed this year	Liabilities			
ti lis year	Current Liabilities			
Amounts owed	Accounts Payable		20.0	19.6
beyond one year	Short-Term Notes I	Payable	7.5	6.0
	Total Current Liabilitie	es	27.5	25.6
Funds from owners and	Long Term Liabilities			
operations (what	Long-Term Debt	Assets = >	60.0	60.0
is left after	Total Liabilities	Liabilities +	87.5	85.6
liabilities are	Owners' Equity	Owners' Equity		
deducted)	Common Stock (Par	Value)	11.0	10.0
What owners				54.0
have contributed Retained Earnings			98.3	64.0
Reinvested funds	Reinvested funds Total Owners' Equity			128.0
from operations	Total Liabilities and C	wners' Equity l	→ \$262.8	\$213.6

Topic 1: Inventory

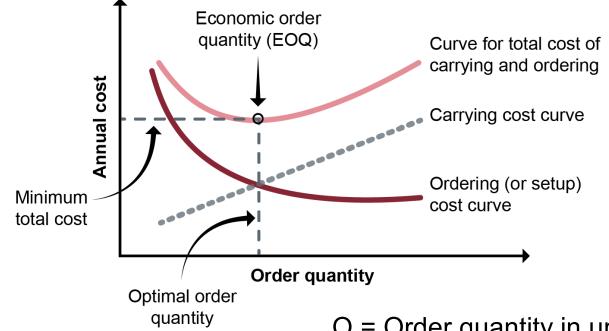
Income Statement for Two Years

	INCOME STATEMENTS	In Millions		
ement	Profit or	-	s) except	
	loss over	per share amts.		
S	For the Years Ending <a period<br="">of time	Year 2	Year 1	
	Revenue (Sales)	\$302.6	\$276.9	
	Less: Cost of Goods Sold (COGS)			
	Direct Labor	38.3	37.6	
Product expenses:	Direct Materials	101.5	99.7	
these expenses are booked when the	Factory Overhead	26.6	26.1	
related units of	>Less: Total Cost of Goods Sold (COGS)	166.4	163.4	
inventory are sold.	inventory are sold. Gross Profit			
	Less: Operating Expenses			
Period expenses: these expenses are recorded in the	Selling Expenses	30.3	24.9	
	General and Administrative	27.2	22.2	
period in which they are incurred.	Lease Expense	12.1	8.3	
are incurred.	Less: Total Operating Expenses	69.6	55.4	
	Less: Depreciation	4.6	4.0	
	Less: Interest Expense	3.9	3.9	
Net Income (Profit) Before Taxes Less: Income Taxes Net Income (Profit) Net Income (as a Pct. of Revenue)			50.3	
			14.1	
			\$36.2	
			13%	
	Net Income Per Share-Basic	\$3.95	\$3.78	



Statement of Cash Flows for Two Years

A viable firm needs positive	CASH FLOW STATEMENTS	In Millions (000,000)	
cash flow from operations in most years.	Year Change in cash	Year 2	Year 1
	Operating Section balance over a period of time		
Increase in inventory or	After-Tax Net Income	\$41.8	\$36.2
accounts receivable	Depreciation Add-Back	4.6	4.0
reduces cash; a decrease will grow cash on hand.	(Increase)/Decrease in Inventory	0.5	(8.6)
	(Increase)/Decrease in Accounts Receivable	(4.1)	(4.1)
Increase in accounts	Increase/(Decrease) in Accounts Payable	0.4	1.8
payable increases cash,	Cash Flow from Operations	43.2	29.3
while a decrease reduces cash.	Investing Section		
	Capex Spend (Capital Expenditures)	(10.0)	(10.0)
Extra cash from financing	Cash Flow from Operations and Investment	33.2	19.3
investments were issued;	> Financing Section Investments in extra		
reduced cash means debt	Additional Equity Capital capacity reduce cas		7.0
was paid down or dividends were paid to owners.	Less Dividends Paid	(7.5)	(5.0)
were paid to owners.	Increase/(Decrease) in Long-Term Debt	-	-
	Increase/(Decrease) in Short-Term Notes	1.5	(1.5)
Net Income +/– Change in (Δ) Operating	Cash Flow from Operations, Investments, and		
+/– Δ Investing	Financing	40.2	19 .8
+/– Δ Financing _+ Beginning Cash	Beginning Cash Balance	56.3	36.5
= Ending Cash	Ending Cash Balance	\$96.5	\$56.3

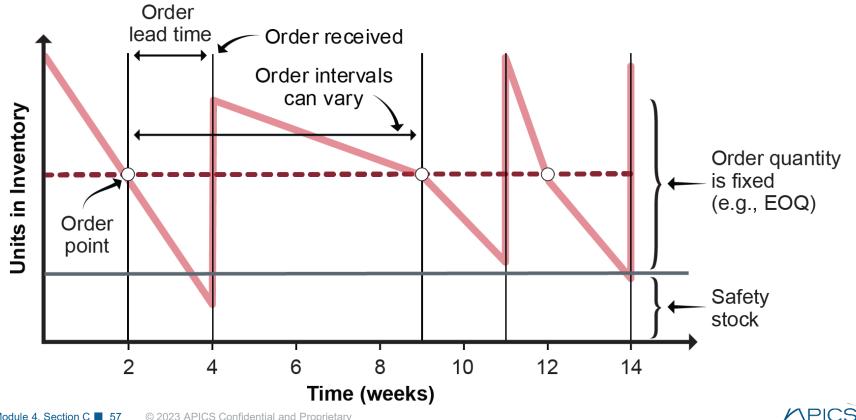


Lot-for-Lot versus Fixed Order Quantity (FOQ)

Economic Order Quantity (EOQ)

Minimum cost occurs when carrying costs = ordering costs

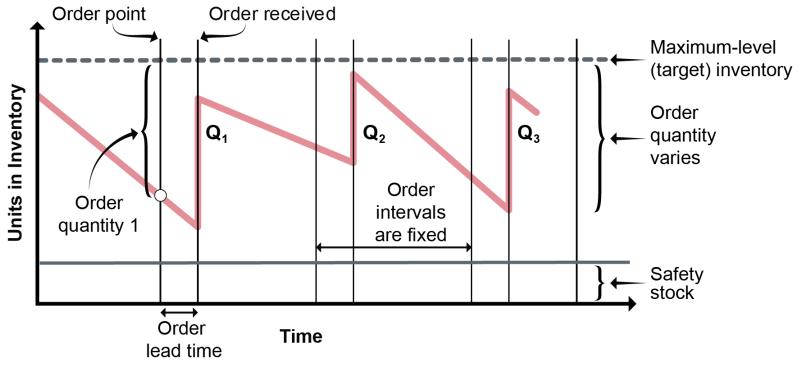
$$EOQ = \sqrt{\frac{2 \times A \times S}{i \times c}}$$


Q = Order quantity in units

- *i* = Annual carrying cost %
- c =Unit cost in \$
- A = Annual usage in units
- S = Ordering costs in \$/order

DICC

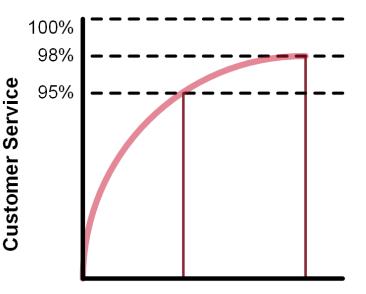
Ordering Systems: Order Point System


Order Point = Demand During the Lead Time + Safety Stock Order Point = (50 Units/Week × 2 Weeks) + 100 Units = 200 Units

Module 4, Section C 57 © 2023 APICS Confidential and Proprietary

Ordering Systems: Periodic Review System

Maximum-Level Inventory = D × (T + L) + SS Order Quantity = Maximum-Level Inventory – Inventory On Hand



D = Demand/unit of time, T = Order interval, L = Lead time, SS = Safety stock

Safety Stock

- Inventory to protect against demand and lead time variations.
- Set/review target frequency for use.
- Methods for setting level: fixed amount, coverage, statistical.
- Need to balance cost of safety stock and cost of stockouts.

Safety Stock

- To decrease: less frequent orders, less demand variability, shorter lead time, more accurate forecasts.
- Organizational, regulatory, or industry requirements may mandate a minimum level of safety stock.

Safety Lead Time

- Replenishment orders placed before (or after) normal order point.
- Could result in overstocks.
- Can impact bullwhip effect.
- Large orders with long lead times, e.g., on container ships, could result in significant overstocks (or stockouts).

Topic 3: Traceability, Accuracy, and Disposition

Product Traceability and Configuration Management

- Reduces size of recalls
- Differentiates for region-specific bans
- Compliance audits
- Compliance with free trade zone agreements and labels such as "Made in U.S.A."
- Customs inspections

Topic 3: Traceability, Accuracy, and Disposition

Assessing Inventory Accuracy

Periodic Count

- Necessary for, e.g., retail.
- Traditional method, requires store shutdown.
- Annual count of all items.
- Often done by temporary employees.
- Disruptive, expensive, errorprone.

Cycle Count

- Count some items each day.
- Count all items a set number of times annually.
- Count A items more often than B or C items.
- Timely correction of errors, no store shutdown.

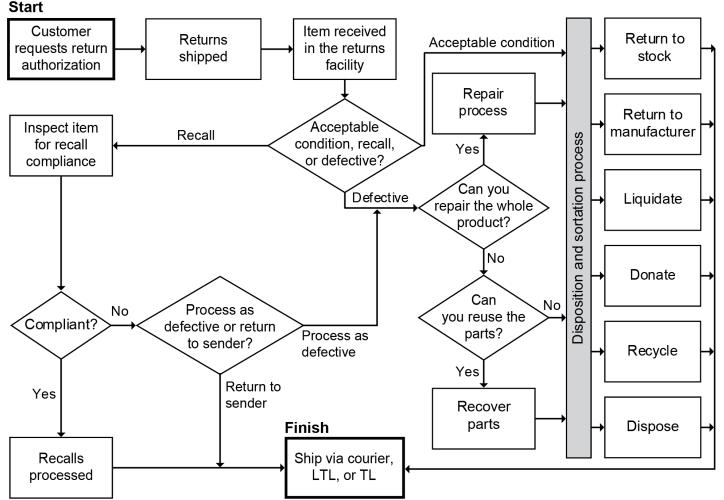
Assessing Inventory Accuracy

Cycle Counting Example

Class	Qty.	Policy	Items/Day
Α	1,000	Per month 20 days	1,000/20 = 50/day
В	3,500	Per quarter 60 days	3,500/60 = 58/day
С	5,500	Semi- annually 120 days	5,500/120 = 46/day
			154/day

Improving Tracking and Counting

- Keep it secure.
- Keep it neat.
- Make labels easily visible and put on everything.
- Use bins and arrangements to ease counting.
- Treat A, B, C items suitably.
- Use technology.


Topic 3: Traceability, Accuracy, and Disposition

Product End-of-Life

- Use end-of-life management for phase-out and phase-in plan.
- Set end-of-sales strategy.
 - Official communication needed so as not to ruin sales
 - May need time for supply chain inventory to sell
- Set end-of-service strategy.
 - Could stay profitable or be loyalty generator
 - Provide less expensive services
- Revisit equipment and space use.
- Consider backward compatibility.
- Accept product at end of life.
- Do risk and crisis management.

Topic 3: Traceability, Accuracy, and Disposition

Disposition of Returned Products

SECTION D: PERFORMANCE AND CONTINUOUS IMPROVEMENT

Module 4, Section D

Section D Introduction

Section D Key Processes:

- Measure and assess performance.
 - Report against KPIs and other objectives.
 - Compare operational performance against the plan.
 - Evaluate inventory accuracy.
 - Compare financial performance against the plan.
- Analyze and utilize applicable continuous improvement philosophies.

Section D Topics:

- Topic 1: Operations, Inventory, and Financial Performance
- Topic 2: Continuous Improvement
- Topic 3: Quality Tools
- Topic 4: Continuous
 Improvement Methods

Metrics and KPIs

Metrics

You get what you measure.

- 1. Determine objectives and define success criteria.
- 2. Select metrics.
- 3. Set challenging but feasible targets.
- 4. Ensure measurements occur.
- 5. Consolidate, analyze, and report.

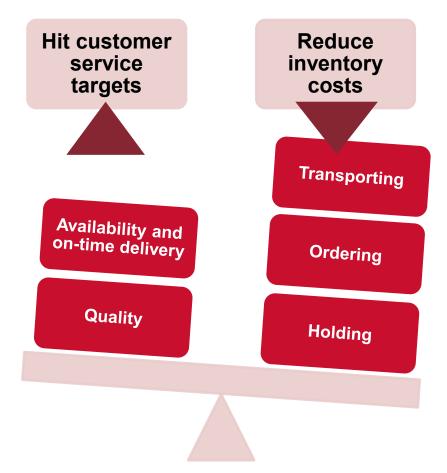
Key Performance Indicators (KPIs)

- All KPIs are metrics but not all metrics are KPIs.
- Use balanced scorecard (e.g., learning and growth for SC improvements).
- Limit KPIs to be workable.
- Set baselines/targets.
- Assess impact on customers and bottom line.
- Monitor KPI performance.

Key Performance Indicators (KPIs)*

New Product KPIs	Merchandise KPIs	Replenishment KPIs
 Internal failure rate External failure rate Introduction lead time 	 Market share Volume growth Total SC inventory turns (across chain) 	 Order fill rate On-time delivery Order fulfillment lead time

*Apply KPIs only to processes and activities that directly enable organizational and supply chain strategies.


Topic 1: Operations, Inventory, and Financial Performance

Operations KPIs

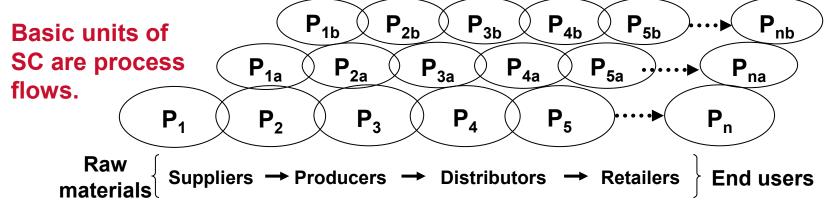
- MPS completed as scheduled
- # of time fence violations
- Standard vs. actual production yield
- Quality metrics
- Inventory turnover by raw material turns, WIP turns, etc.

Inventory Management KPIs

Methods of Tracking Inventory

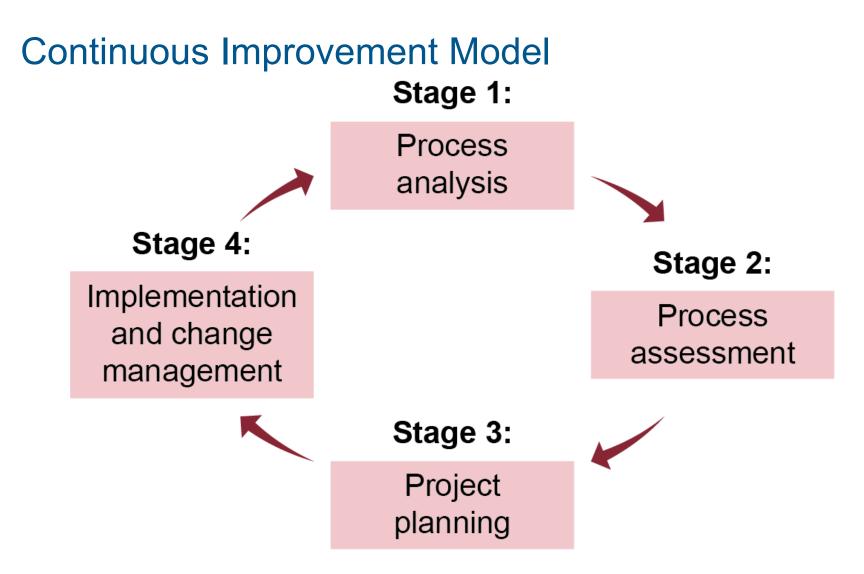
Order of steps is important:

- 1. Identify the item by SKU.
- 2. Verify the quantity.
- 3. Request and get approval for move or get order.
- 4. Execute the inventory movement.
- 5. Create a record of the transaction completion.



Total Quality Management (TQM)

- Management approach to long-term success through customer satisfaction.
- Guiding principles:
 - -Actions show management commitment.
 - Fix processes rather than assigning blame.
 - Place customer at center of improvement discussions.
 - Suppliers are partners, not adversaries.
 - Standard performance measures enable tracking over time.


Reasons to Adopt Continuous Improvement

Supply chain management is process-oriented.

- Supply chains are dynamic.
- Supply chains evolve.
- Continuous improvement of supply chain design can reduce the costs of poor quality.

Improvement Initiatives

Personnel Improvement Initiatives

Process Analysis and Improvement

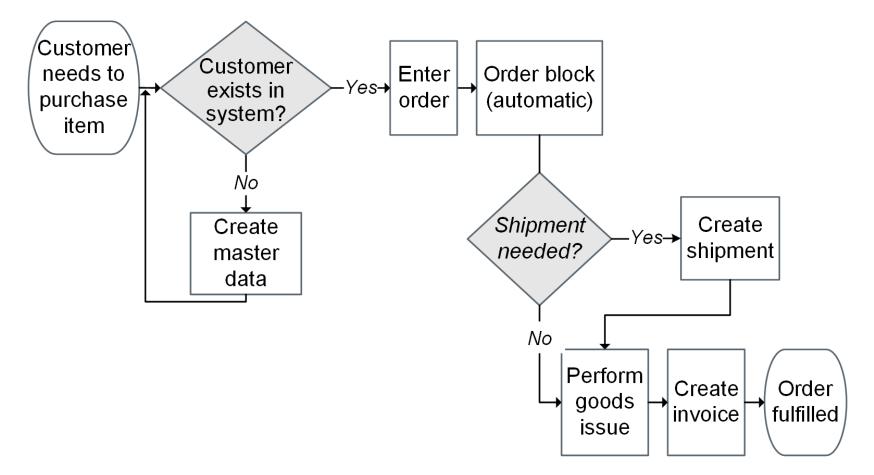
- Developing knowledge, skills and abilities.
- Consider individual learning styles: visual, tactile, and auditory.

- Top-down direction
- Bottom-up implementation
- Strategic alignment and prioritization
- "As is" state
- "To be" can start with "low hanging fruit"

Process Analysis and Improvement: Visibility

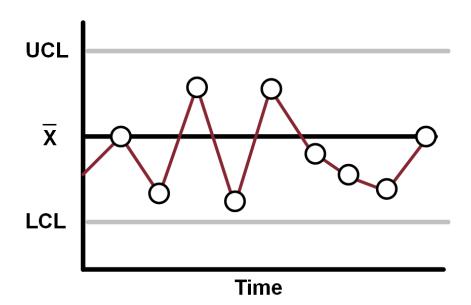
"You can't fix what you can't see."

"Facts Are Your Friends"


Benchmarking

Definition: Setting goals by comparison to another entity or authoritative definition of excellence

Competitive	Best-in-Class	Process
Benchmarking	Benchmarking	Benchmarking
Setting goals by reference to a competitor	Setting goals by reference to the best performer	Setting process goals by reference to an authoritative process description

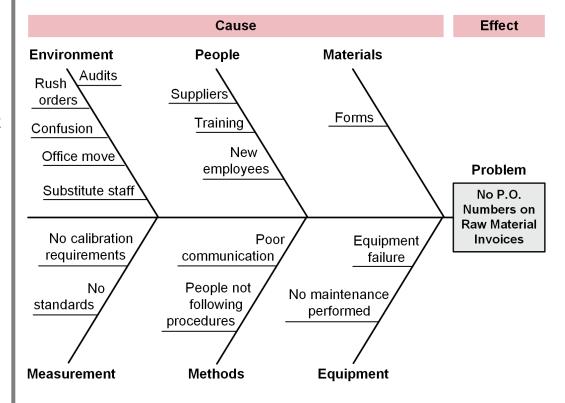


Seven Basic Tools of Quality: Process Map

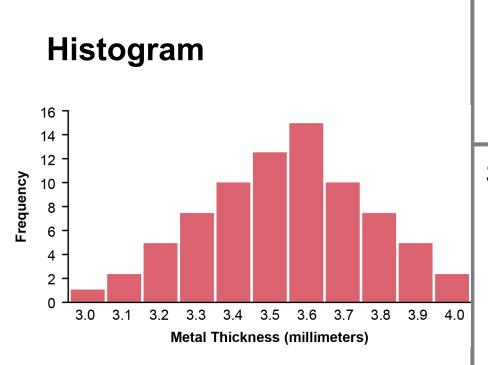
Seven Basic Tools of Quality: Control Chart

- Makes variance visible
- Statistical process control
- Contains samples from sequences
- Reveals spikes indicating process control problems
- Examples
 - Component measurement conformance
 - Wait time for service
 - Percentage of event occurrence

Seven Basic Tools of Quality


Pareto Chart

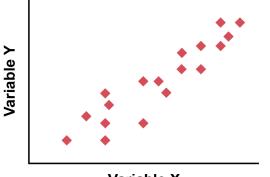
%


Occurrence

80 Pareto charts/diagrams rank causes from most significant to least significant. They are a visual analysis tool. 15 4 1 Finish Weight Shape Etc. Attribute

Cause-and-Effect Diagram

Seven Basic Tools of Quality

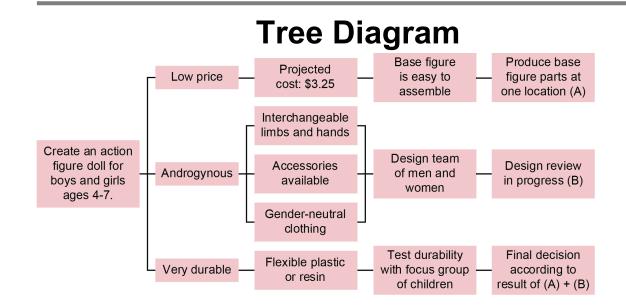


Check Sheet

Defect	February				
Defect	1	2	3	4	Total
Too pink	1111	Ш	1	11111	17
Too red	I	I	_	II	4
No fragrance	П	_	I		6
Wrong size	1111		I	1#4	12
Totals	13	6	3	17	39

Scatter Chart

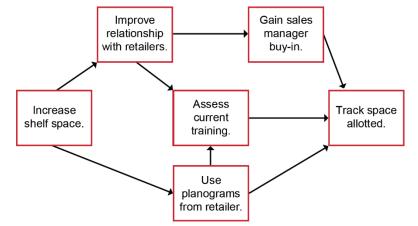
(**Y axis:** competency level for execution of task, **X axis:** number of training hours completed on a specific task)



Seven New Tools

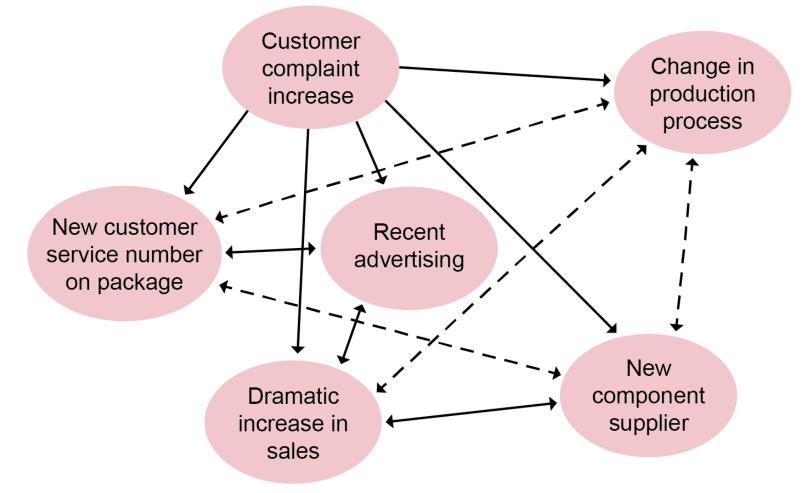
Affinity Diagram

Issue: Product recall causes			
Inspection	Customer feedback	Product materials	
Frequency	Costs	Return processes	

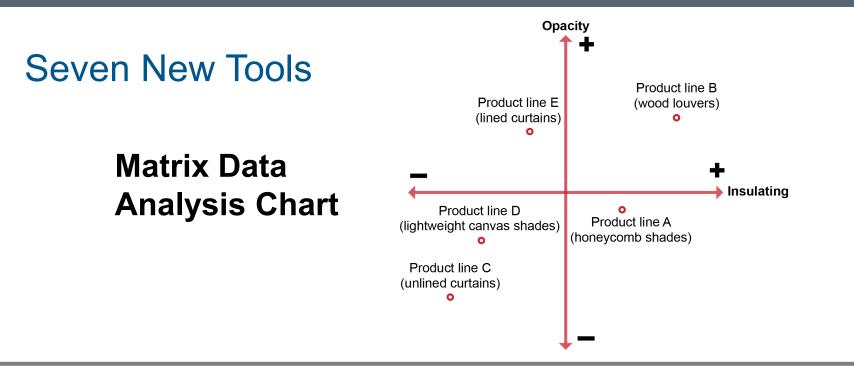


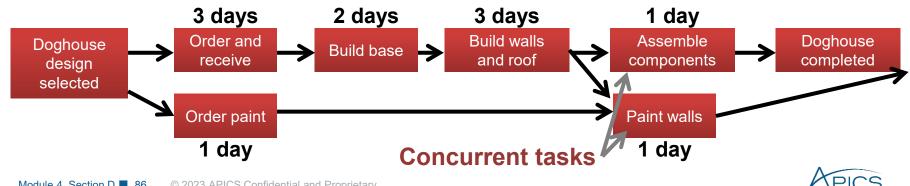
Seven New Tools

Matrix Diagram


Specification	Customer A	Customer B	Customer C
Width	≤.789 inch	≤.790 inch	≤.785 inch
Length	≤1.11 inch	≤1.20 inch	≤1.01 inch
Thickness	≤.55 inch	≤.575 inch	≤.545 inch
Color (Pantone)	#127	#130	#129

Process Decision Program Chart




Seven New Tools: Relationship Diagram

Activity Network Diagram

Eight Types of Waste

Туре	Description
Process	Taking unneeded steps in work; inefficiencies
Movement (transportation)	Moving products unnecessarily
Methods (motion)	Wasted time or efforts by operators
Product defects	Products/services that do not meet specifications
Waiting time	Queuing delays
Overproduction	Making more product than required
Excess inventory	Holding stock not required to fulfill customer orders
Unused people skills	Waste of knowledge or capabilities

Waste:

- Any activity that adds no value in eyes of customer
- Byproduct of process or task needing special control

Lean Supply Chain Thinking

Lean Objectives

- Eliminate waste in value streams.
- Meet customer demand.
- Increase velocity.
- Reduce need for working capital.
- Increase inventory turns.
- Gain market share.
- Increase profitability.
- Develop the workforce.
- Produce perfect quality.

Five Lean Principles

- Create value for the customer.
- Identify all steps across a value stream.
- Create value flow.
- Pull products based upon customer demand.
- Strive for perfection by continually removing successive layers of waste.

House	of Toyota	Cust foo	omer :us	
Best quality, lowest cost, shortest lead time by eliminating wasted time and activity				
	Just in time (JIT) ◆ Takt time ◆ One-piece flow ◆ Pull systems	contir improv	ire of nuous vement nvolvement nent	 Jidoka Poka-yoke (mistake-proofing) Manual or automated line stop Separate operator and machine activities In-station control
Standardization				
	Standardized work	Kan	ban	5S
Operational stability				
	Total productive maintenance			Heijunka

Additional Lean Considerations

Value stream mapping

Map

- Steps for broad range of SC processes
- Management and information systems
- Current vs. future state
- Value-added versus non-value-added

Kaizen event/ Kaizen blitz^(sm)

- Event
 - Time-boxed
 - Embed in longterm plans
- Blitz
 - Rapid improvement of limited process area
 - Implement in week or less

Five Ss

- Sort (seiri)
- Simplify (set in order) (seiton)
- Scrub (seiso)
- Standardize (seiketsu)
- Sustain (shitsuke)

Additional Lean Considerations (continued)

Setup time reduction

- Major impact on cost and product variety.
- Reduction in time and materials.

Total productive maintenance

- Preventive maintenance.
- Efforts to adapt, modify, or refine equipment to:
 - Increase flexibility
 - Reduce material handling
 - Promote continuous flows.

Three major areas of waste

- Muda (consumes resources, creates no value).
- Mura (unevenness).
- Muri (overburdening).

Just-in-Time (JIT)

Just-in-Time (JIT) Elements

- 1. Have inventory only when needed.
- 2. Quality at zero defects level.
- 3. Reduce lead times by:
 - Reducing setup times.
 - Reducing queue lengths.
 - Reducing lot sizes.
- 4. Review and revise operations.
- 5. Strong supplier relationships.
- 6. Multiskilled labor force.
- 7. Move toward cellular manufacturing environment.

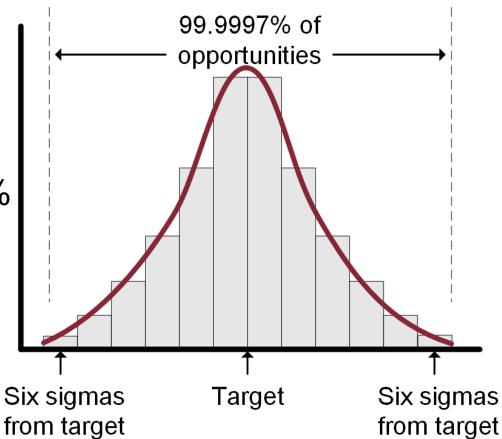
JIT Philosophy

- Eliminate all waste.
- Strive for continuous productivity improvements.

Applies to the following forms of manufacturing environments: job shops, process, repetitive.

JIT Benefits

- Manufacturing cycle time reduction
- Inventory reduction
- Labor cost reduction
- Quality cost reduction
- Material cost reduction
- Improved vendor relationships



Just-in-Time (JI	Γ)					
JIT Basics						
Waste reduction	Variability reduction	Pulling materials Into production				
Elements of JIT						
Suppliers	JIT layout	Inventory reduction				
 Deliver on time. No inspections. Reduce inventory. 	Minimize distances.Maximize flexibility.	 Everything must work perfectly to have no safety stock. 				
Scheduling	Continuous job improvement	 Reduce setup times. 				
 Level 	 Employee 					
 Kanban 	JobProcess					

Six Sigma

- Aim for "zero defects."
- Tolerate no more than 3.4 defects per million opportunities (99.9997% of opportunities with no defect).

Elements of Six Sigma

Customer

- Customer expectations define quality.
- Multiple opportunities for defects in each interaction/item.

Process

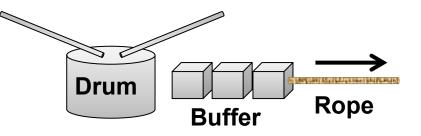
- Take outside-in (customer) view of process.
- Minimize total errors and variability.

Employee

- Full participation.
- Implement from below.
- Green belt, black belt, master black belt.

Five-Phase Six Sigma Process: DMAIC

- Define the nature of the problem.
- Measure existing performance; record information about underlying causes.
 - Analyze information to find root causes.
- Improve process by effecting solutions to problem.
- **Control** process until solutions become ingrained.



Theory of Constraints (TOC)

Any system, such as a supply chain or a production process, contains at least one element (constraint) that limits its maximum throughput.

Five-step TOC process:

- 1. Identify the constraint.
- 2. Exploit the constraint.
- 3. Subordinate other processes to the constraint.
- 4. Elevate the constraint.
- 5. Repeat the cycle.

