CSCP CERTIFIED SUPPLY CHAIN PROFESSIONAL

MODULE 2: GLOBAL SUPPLY CHAIN NETWORKS

SECTION A: SUPPLY CHAIN DESIGN AND OPTIMIZATION

Module 2, Section A

Section A Introduction

Section A Key Processes:

- Define and manage the supply chain network.
 - Design the supply chain network.
 - Determine business requirements, IT strategy, and cyber security.

Section A Topics:

- Topic 1: Supply Chain Design and Management
- Topic 2: Business and IT Requirements
- Topic 3: Technology Analysis and Optimization

Topic 1: Supply Chain Design and Management

Supply Chain Design: Technology Decisions

- Visibility and velocity enabler
- Theory of constraints also true for IT
- How often data is transferred and analyzed
- Support needs of the infrastructure, internet, and e-commerce
- Competitive strategy with IT and decision support systems

Topic 1: Supply Chain Design and Management

Network Configuration

- Number, location, and capacity of warehouses
- Location of plants and production levels per product
- Transportation (plant to warehouse, warehouse to retailer)

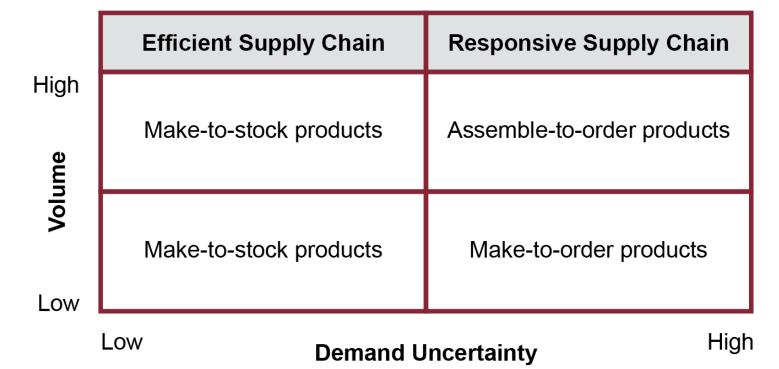
- Country-specific infrastructure assessment
- Inventory location and levels
 - Optimal levels of right kinds of inventory
 - Lowest inventory that meets customer service goals

Efficiency with Responsiveness, plus Resilience

Efficient Supply Chain

- Least-cost manufacturing/supply chain
- Relatively stable demand
- Reasonably accurate forecasts
- Make-to-stock strategy

Resilient Supply Chain


- Enhance fit of supply chain to product
- Agile, adaptable, and aligned to other supply chain participants
- Ability "to anticipate, create plans to avoid or mitigate, and/or to recover from disruptions..."

Responsive Supply Chain

- Flexible in response to changing demand
- More volatile demand
- Uncertain forecasts
- Make-to-order or assemble-to-order strategy

Fit Supply Chain Type to Product

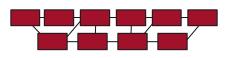
Supply Chain IT Requirements and Benefits

Efficient transfer of secure information

Massive data flow over internet

Gather, integrate, report data

Replace push with pull


Strategic/tactical capabilities

Data entered only once

Remove "friction"

Throughout the extended supply chain

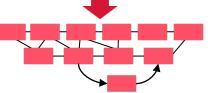
SC velocity, agility, scalability

Cost-effective global visibility

Avoid the bullwhip effect

Lean, cost-effective SCs

Share knowledge with SC


Data accuracy and straight-through processing

New relationships

Sharing Information Helps Build Trust

 Ad hoc links in the extended supply chain increase adaptability. Sharing information builds trust and allows coordinated planning between partners.

Supply Chain IT Cost-Benefit Analysis

- Not a computer project; a business decision.
- Recipient, not IT, develops business case.
- Strategic IT investments should
 - Pay back in cost savings
 - Increase market share
 - Innovate product/service
 - Make company more adaptive to change
 - Match company's goals.
- Technology audits for justifications and pre- and post-implementation reviews.
 - Audience is upper management.

Benefits and Costs

Bene	Costs		
Tangible	Intangible	Costs	
Lower maintenance costsFaster implementation	Customer retentionCustomer service	Hardware/softwareMaintenance fees	
 Increased sales volume 	Order status visibility	Capital expenditures	
Improved schedulingGreater financial returns	Workforce redeploymentEmployee satisfaction	Opportunity costsStaff/consultant time	
Lower overhead	and efficiency	Configuration and	
 Reduced cash-to-cash cycle 		customization	

Benefit-Cost Analysis and ROI

• Benefit-Cost Analysis =
$$\frac{\text{Total Benefits}}{\text{Total Costs}}$$

= $\frac{\text{US}\$345,000}{\text{US}\$259,000}$ = 1.33

• Return on Investment =
$$\frac{\text{Total Benefits} - \text{Total Costs}}{\text{Total Costs}}$$
$$= \frac{\text{US}\$345,000 - \text{US}\$259,000}{\text{US}\$259,000} = 0.33 = 33\%$$

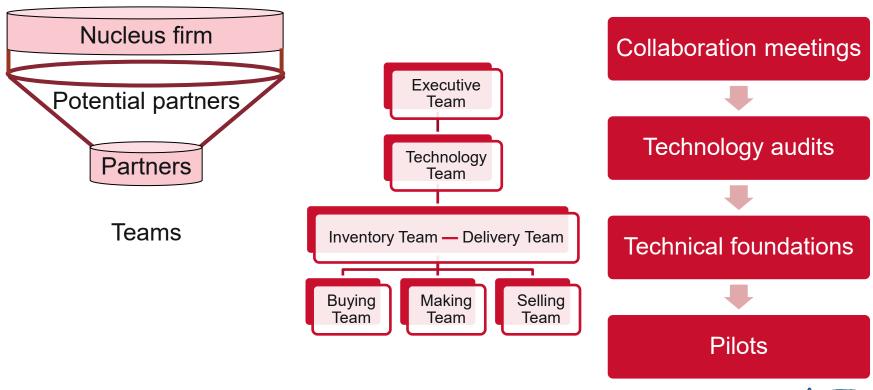
Stages of Supply Chain Network Technology Optimization

	1: Multiple Dysfunction	2: Semi- Functional Enterprise	3: Integrated Enterprise	4: Extended Enterprise	5: Orchestrated SC
Internet	Static websites	Online catalogs	Intranets across all functions	E-commerce	Responsive; cybersecurity
Integration	None; no teamwork	Batch	Internal process integration; teams	SC networks; process integration	Closed gaps; automation, visibility
SC planning	Little information exchange	Informal; no initiative coordination	Formal/global; enhanced logistics	Integrated global planning; SC vs. SC. competition	Data driven analytics; cross- functional teams
Production scheduling	Basic MRP	Closed-loop MRP	MRP—ERP	Externally integrated ERP	Automated demand data
Integration with suppliers	Fax/phone	EDI; seek low price	EDI with all large suppliers	VMI, online RFQ	Category strategies drive integration
Customer delivery	Research	Local inventory	ATP	СТР	Automated delivery quotes

Supply Chain Network Optimization Strategy

1. Determine goals and desired end state of SC.

- 2. Create crossfunctional/crossbusiness teams.
- **3.** Organize SC's operational processes and IT's mission.


4. Design in change management and training with stringent timetables.

5. Create conceptual model.

6. Establish technical infrastructure.

Role of Nucleus Firm/Cross-Functional Teams

CSCP CERTIFIED SUPPLY CHAIN PROFESSIONAL

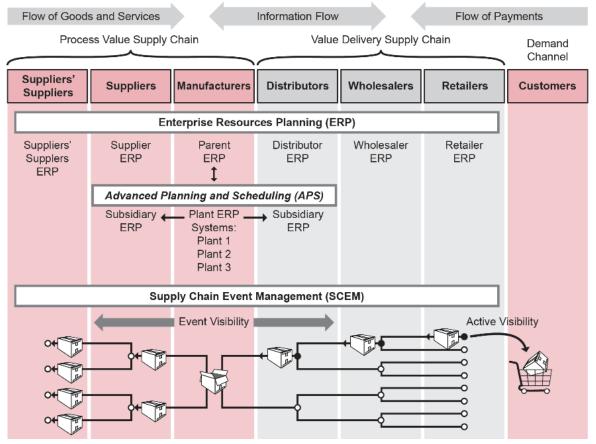
SECTION B: END-TO-END CONNECTIVITY AND VISIBILITY

Module 2, Section B

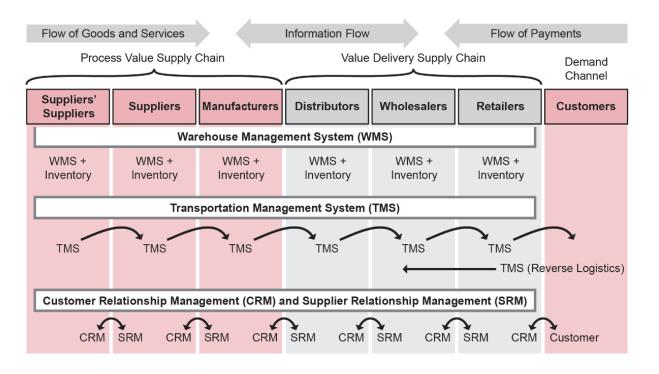
Section B Introduction

Section B Key Processes:

- Design/manage end-to-end SC connectivity/visibility.
 - Supply chain technology
 - Data, status, document share
 - Legal requirements
- Master data: customer, supplier, item, engineering, and logistics
 - Create, update, cleanse, retire


Section B Topics:

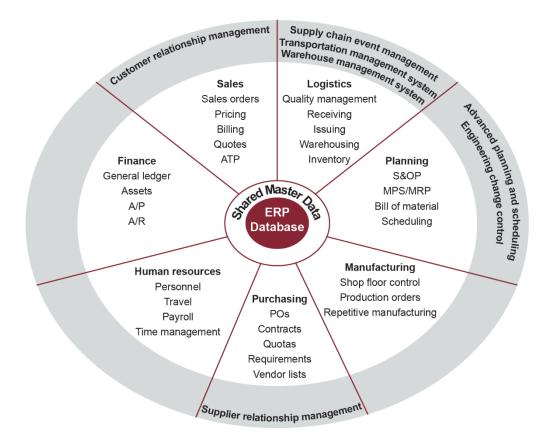
- Topic 1: Supply Chain Technology Applications
- Topic 2: Connectivity,
 Visibility/Sharing, and Legal
- Topic 3: Supply Chain Master Data


Comprehensive SC Management System

- Process value chain
- Value delivery chain
- Demand channel

Comprehensive SC Management System (continued)

Enterprise Resource Planning (ERP)


"Framework for organizing, defining, and standardizing the business processes necessary to effectively plan and control an organization so the organization can use its internal knowledge to seek external advantage." (Dictionary)

- Modularized suite
- Automated interactions
- Common data source
- Challenge: linking supply chain partner ERP systems
- Need vision and direction for visibility and efficiency

ERP System Functionality

- Central database creates shared master data.
- Modular suite

ERP System Evolution

Older ERP systems

Implicit business models (former best practices)

Begin with the end in mind.

Get full executive support.

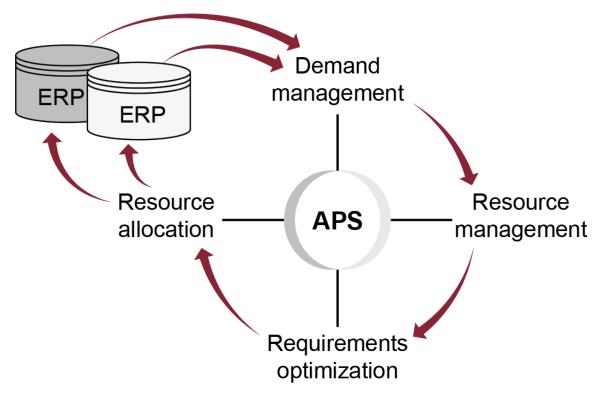
ERP versus Best-of-Breed Systems

ERP Systems

- Simpler, better integration
- Leveraged data ownership
- Shorter training
- Fewer vendors
- Support contracts
- Often lower total cost of ownership
- Vast resources and staff

Best-of-Breed Systems

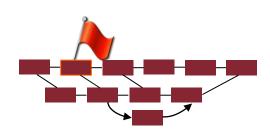
- Faster innovations
- Industry expertise
- Niche applications
- Functional area expertise (e.g., warehousing)



Upgrades, New Releases, New Modules

- Useful new upgrades, ERP releases, and modules:
 - Support an organization's top strategic issues
 - Have better open architecture
 - Provide speed and lower cost of future upgrades
 - Ease supply chain communications
 - Have better business information/metadata
 - Provide faster learning curve
 - Fully integrate currently disjointed systems
 - Are less expensive than increasing cost of old version.
- New system should match ≥ 80% functionality goals.
 - Customize only remaining 20% (or less), configuration for rest.

Advanced Planning and Scheduling (APS)

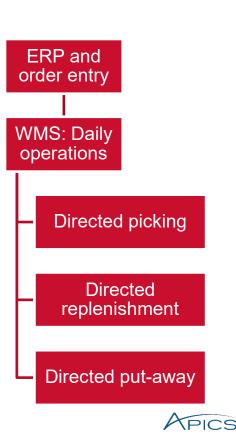


Supply Chain Event Management (SCEM)

- Flags SC events to trigger alerts or actions in other applications
- Monitors SC business processes
- Exception reporting to business intelligence software

Active visibility:

- Monitor
- Measure
- Notify
- Simulate
- Control


SCEM Benefits

- Faster response to supply/demand change
- Exception notices on portable devices
- Earlier marketing/sales demand reaction, better forecast
- Improved order accuracy, tracking, and cycle time
- Less management time on shipping/receiving
- Reduced inventories and total SC costs
- Greater labor efficiency and productivity
- Decentralized collaboration
- Increased customer responsiveness, fewer returns
- Real-time communications with ad hoc partners

WMS Functions

- Receiving
- Storage location management and optimization
- Cross-docking
- Inventory control
- Quality control
- Order selection and task management
- Automated replenishment
- Shipping
- Security
- Returns

WMS Interfaces and Benefits

WMS Interfaces or Portals

- Web-based interfaces/portals.
- Visibility and control:
 - Push and/or pull data and inventory.
- Enables merge-in-transit, crosscompany warehousing, etc.

Benefits of WMS

- More productivity, fewer errors
- Competitive (e.g., cross-dock)
- Retail/international handling
- Automated put-away and pick accuracy
- Capacity and distribution efficiency (e.g., pallet discounts)
- Reduced cycle/safety stocks
- Optimized space

TMS Functions

TMS must provide:

 Transportation planning and order fulfillment integration

 Centralized control over shipment planning

Execution control

Visibility

Automation.

Transportation network design

Private fleet management

Carrier selection

Shipment planning Routing

Load matching and optimization

Freight rating Manifesting Visibility tools

Load tendering and delivery scheduling

Shipment tracking and settlement

Post-shipment analysis

TMS Features

Web-Based Dynamic Updates

- Shipment costs
- Fuel costs
- Maps and routes
- Road conditions

- Traffic
- Weather
- Carrier availability

- Shipper and Carrier Collaboration
- Load planning
- Cost optimization
- Shipment consolidation

Global Track/Trace

- Cellular GPS
- AIDC (RFID)
- Bills of lading
- Shipping labels
- SKU information

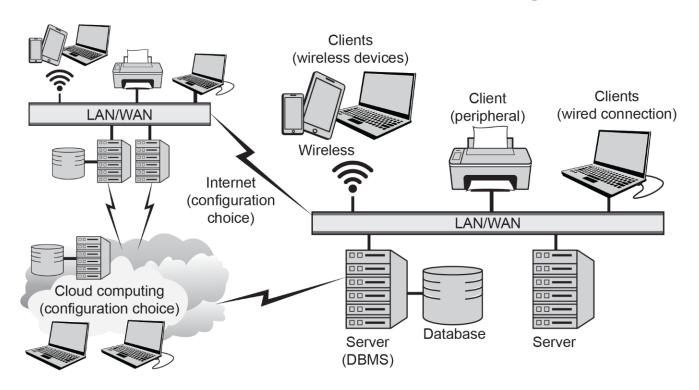
- Waybills
- Driver performance

Transportation Marketplaces

 E.g., Ace Hardware used its SaaS network to send an RFI to almost 500 carriers, reducing transportation costs by 4%

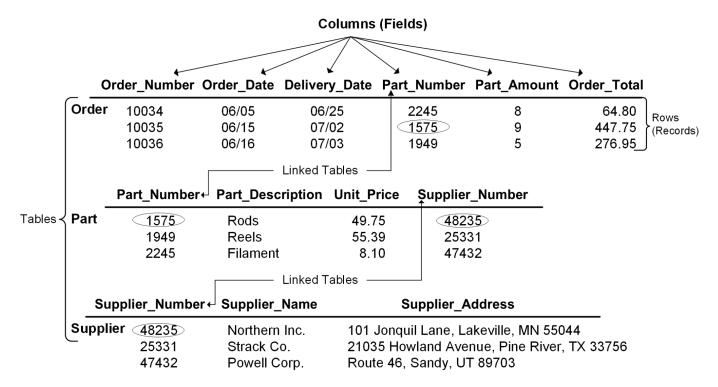
Benefits of TMS

- Lower costs (less deadheading, demurrage, dwell time)
- Collaborative use of shipping
 - Linked communications
 - Aggregated volumes
 - Capacity procurement
 - Web-based visibility of information and planning
 - Distributed data access to reduce bottlenecks
- Centralized operations that lower support costs
- Real-time, accurate costs (faster, better decisions)


Information System Architecture Considerations

The architecture of the information system should be aligned with and match the architecture of the organization.

- 1. Organizational functions
- 2. Communication of coordination requirements
- 3. Data modeling needs
- 4. Management and control structures



Database, Networks, Software, Configuration

Databases and Database Management

Software as a Service (SaaS)

Basic Criteria

- Vendor
- Logic and data stored in central location
- End-user access to data and software, run and used over the internet

User Advantages

- Lower initial costs
- Immediate use
- Smaller storage requirements
- Fewer personnel

Vendor Advantages

- Continuous income
- Single version
- Reduced software piracy and unlicensed use

Cloud Computing

- The "cloud" is a network of data centers enabling computing resources to be accessed and shared as virtual resources.
- Secure and scalable.
- Can interface with ERP or cloud-only ERP exists.

- laaS: Infrastructure
 - PaaS: Platform
 - SaaS: Software
- Hybrid solutions most common.
- ISO/IEC 17788:2014

Organizational and Information System Architecture

Organizational Strategy

- Align strategies at organizational and extended supply chain levels.
- Translate organizational strategy into commitments to treat information as strategic investment.

Information Strategy

- Set guiding principles, priorities, and common goals for network design.
- Envision high-level end-to-end
 IS structure for firm/SC.
- Do gap analysis.

Organizational and Information System Architecture

Information Content Definition

- What data to collect and how to gather, keep accurate, store, access, control, and analyze
- Business modeling for SC

Information Policies and Controls

- IS design, daily operations, and improvement policies
- Governance and audit
- SC communications and security

Organizational and Information System Architecture

Information Infrastructure Design

- Policies and controls translated into cohesive and cost-effective system
- Detailed decisions

Databases, Networks, Software, and Configuration

- Use of existing, adding, or upgrading
- Vendor search and selection
- Critical DBMS decisions

Organizational and Information System Architecture

Information Infrastructure Change

 Continual system change and improvement

Action Plan, Schedule, and Prioritization

 Regular strategy, tactical update, and operational gap analyses → IT action plans

Front End, Middle End, and Back End

- Server and database
- Programmers: Fast access, accuracy, organization, and security

Back end

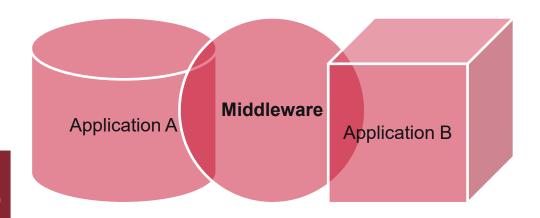
Middle end

- "Glue"
- Programmers: Simplicity, automated data request/provision

- User interface or client in clientserver
- Programmers: data entry validity, user experience

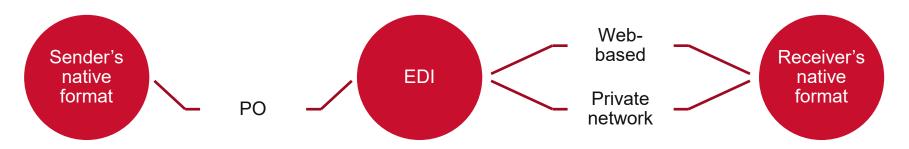
Front end

Middleware


- Sits in the "middle" between two applications (internal or external)
- Why care about middleware?
 - Helps integrate SC
 - Enables partners to share information

- Avoids duplicate or inconsistent data
- Breaks down organizational silos
- Secure transactions
 - Authentication
 - Authorization

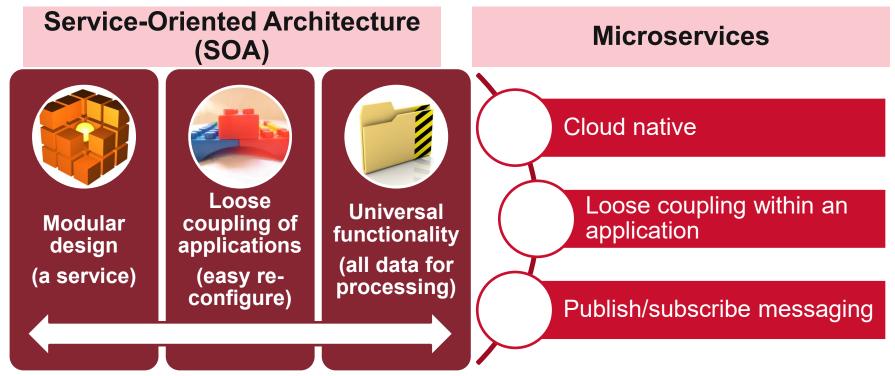
Content-level middleware: EDT and EDI


Data-oriented: custom linkages

Process-oriented (business process management [BPM])

Content-Level Middleware: EDT and EDI

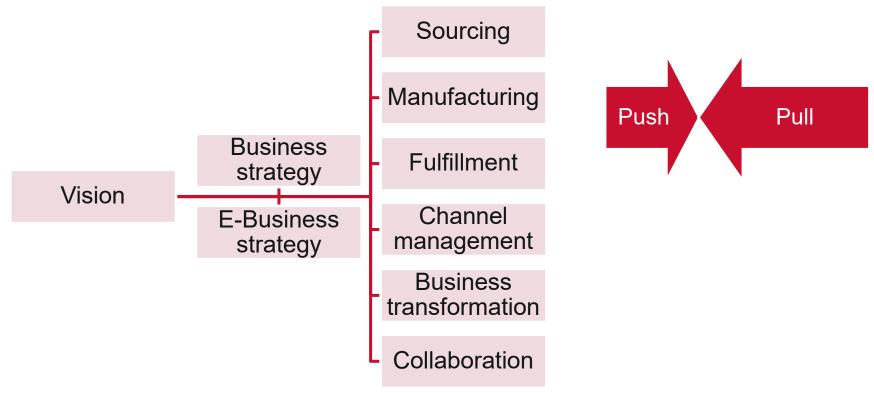
- Electronic data transfer (EDT) is synonym; electronic data interchange (EDI) is standardized version.
- Electronic version of document, e.g., purchase order, ASN, or invoice.
- Batch-processed.
- Parties must agree on EDI data format.



Application Programming Interfaces (APIs)

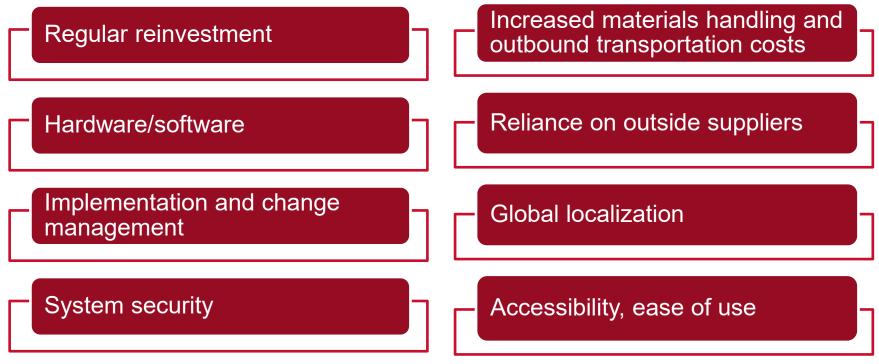
- Middle end code residing nearer to front end than middleware
- Simple one-to-one interactions (not multiple systems at once)
- Other devices can query the database automatically and frequently.
- Lightweight, developer friendly, platform independent, scalable code.
- Software architecture: Web services
 - Interchangeable "building blocks."
 - Open standards.
 - For example, airline flight check-in:
 - Get best available database search engine and best seat assignment applications from different vendors.
 - Develop own pricing application but all works together.

Application Programming Interface Types

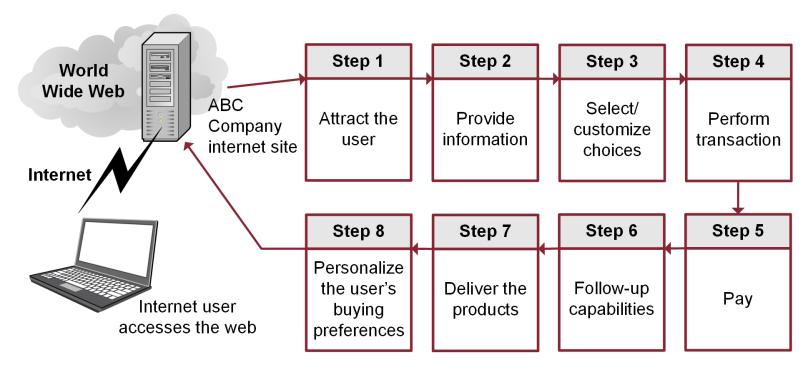


Traditional vs. Electronic Business Supply Chain

Characteristic	Traditional Supply Chain	Electronic Business Supply Chain
Ownership	Own vertical SC through mergers	Own core capabilities in virtual SC
Competitive advantage	High market share/assets dominate	Agile firms with few assets dominate
Nucleus firm	Retailer/manufacturing (industrial)	Brand equity or greatest efficiency
Trading	Best deal at expense of other	Share risks and rewards
Competitors	No competitor interaction	Interact if mutual gain can be found
Production	Economies of scale and scope	Engineering competitive SC
Collaboration	Internal silos/costly networking	Partner silos/open networking
Suppliers	Limited by buyer relations (phone)	Marketplaces and partner integration
Customer service	Reactive, with little feedback used	Proactive with better use of feedback
Intermediaries	Fixed, vertically integrated	Avoid some unless they add value



E-Business Considerations



Potential Costs and Challenges with e-Business

Sell-Side E-Commerce Website

Sharing Data Among Trading Partners

	Distributor Integration	Quick Response Program	Continuous Replenishment	Vendor-Managed Inventory
Customer Role	• N/A	Provide POS data to supplier.Submit individual orders.	 Notify suppliers of actual daily sales or ware- house shipments. 	Sell.Do joint forecast.Manage relationship.Help logistics.
Supplier Role	Integrate IS to share: Inventory data Expertise Inventory-related DI Service-related DI.	Synchronize supply with demand.Forecast.	 Replenish without receiving orders. Prevent stockouts. Reduce inventory. Improve turnover. 	 Display, store, deliver, receive, stock, and count. Schedule replenishment. Keep inventory records. Represent supplier at plant.

VMI and Consignment Combinations

No.

Consignment?

Supplier decides on replenishment. Replenishment goods are immediately invoiced. Buyer owns inventory. Traditional: Organization owns and manages inventory or sells it to independent distributors who order and manage their own inventory.

Yes

Supplier decides on replenishment, but only sold inventory is invoiced. Supplier employs restockers, e.g., Frito Lay pays restockers per bag of chips sold to promote proactive restocking.

Seller wants/needs items on site but may not be fast-selling, e.g., hospital controls stock of pacemakers owned by supplier. When one is used, one is sent to replenish inventory and invoice is sent for the used one.

Yes.

No.

VMI?

Collaborative Planning, Forecasting, and Replenishment (CPFR®)

Manufacturer Tasks	Collaboration Tasks	Retailer Tasks				
Strategy & Planning						
Account planning Market planning	Collaboration arrangement Joint business plan	Vendor management Category management				
Demand & Supply Management						
Market data analysis Demand planning	Sales forecasting Order planning/forecasting	POS forecasting Replenishment planning				
Execution						
Production & supply planning Logistics/distribution	Order generation Order fulfillment	Buying/re-buying Logistics/distribution				
Analysis						
Execution monitoring Customer scorecard	Exception management Performance assessment	Store execution Supplier scorecard				

Legal and Privacy Requirements

Trade Disruption disruptions insurance Political risk: IP Disruption expropriation insurance PII Data privacy risk policies, controls Cyber Cybersecurity insurance

EU's GDPR Rights Informed how used Access personal data Correct errors Be forgotten Get copy Opt out

Cybersecurity Risks

NIST Cybersecurity Framework

Profile

- Cybersecurity road map per supply chain
- · As is, to be

Tiers (maturity)

- Partial
- Risk informed
- Repeatable
- Adaptive

Core

ProtectDetect

Identify

- Respond
- Recover

MITRE ATT&CK Framework

Reconnaissance

Resource development

Initial access

Execution

Persistence

Privilege escalation

Defense evasion

Credential access

Discovery

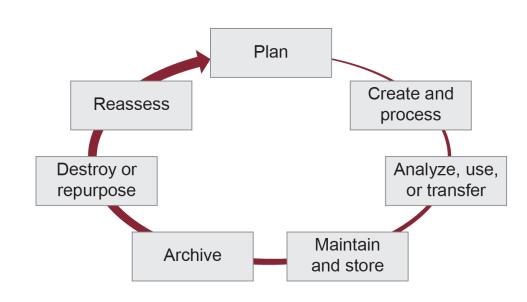
Lateral movement

Collection

Command and control

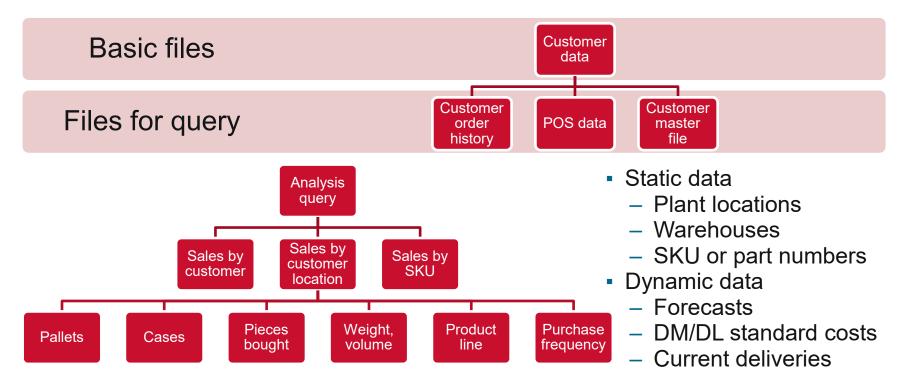
Exfiltration

Impact


Master Data Management and Life Cycle

Master Data Management

Governance, methodologies, policies, procedures, and technologies


- Coordinates life cycle
- Stewardship
- Accuracy
- Consistency
- Completeness
- Timeliness

Master Data Life Cycle

Types of Master Data Used

Creating Data: Data Capture

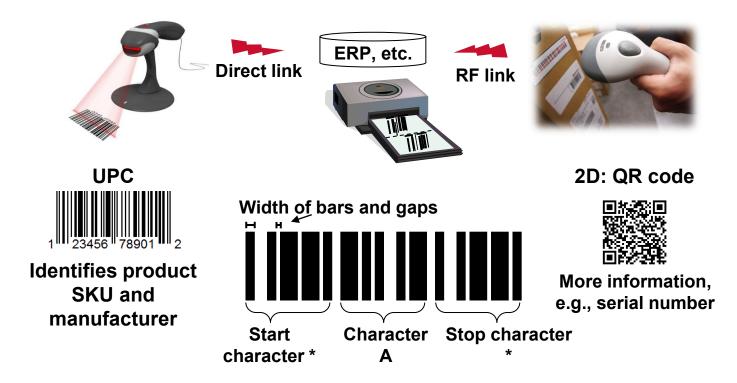
- Incremental data volume improvement.
- Partial data better than no data.
- Capture data at the source.
- Passive better than manual capture.
- Overcome fast-paced, hostile, or language barrier areas.
- Capture ancillary data when possible.
- Real-time is best, but batch may suffice.

Automatic Identification Systems (AIS)

AIS

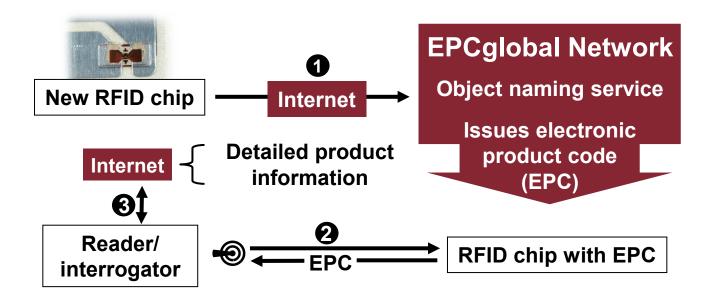
- Automatic classification
 - Optimize for storage/transport
- Automatic identification
 - Devices communicate presence

Types of AIS


- Warehouse automation
- Bar codes
- RF devices
- RFID
- Smart cards
- Magnetic stripes
- Vision systems

Impact of AIS on SC

- Paperless, few errors
- Wireless and real-time inputs and payments
- Reduces stockouts
- Enriches customer information/service
- Automated replenishment, inventory visibility
- Track savings, ROI



Bar Codes and Bar Code Scanners

Radio Frequency Identification (RFID)

Internet verification prevents counterfeiting and stores extra product information.

RFID Tags, Errors, and Adjustments

Tag types

Causes of read errors

- Antenna size
- Reader power
- Frequency used
- Reading cases on conveyor more reliable than whole pallet

Adjustments

- Readers located for low interference
- Buffers or shields
- Adjusting angle of antennae
- Changing reader/tag to suit facility

Liquids absorb

Metals reflect

Capturing and Communicating POS Data

Point-of-sale

- Inventory and sales data adjusted at time and place of sale (bar codes, etc.).
- Information collected about customers at time of sale.
- Mobile devices can collect POS data too.
- Needed for VMI, etc.

Benefits

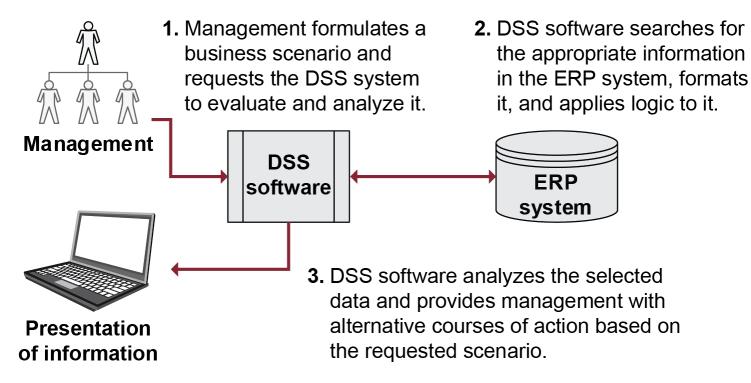
- Capture data on SKU, promotions, inventory.
- Replace push with pull.
- Inventory deductions to finance.
- Collect purchasing habits.
- Reduce bullwhip effect.
- Reduce data entry errors.
- Low-cost updates.

Model and Data Validation

Test with historical data.

Test with current data.

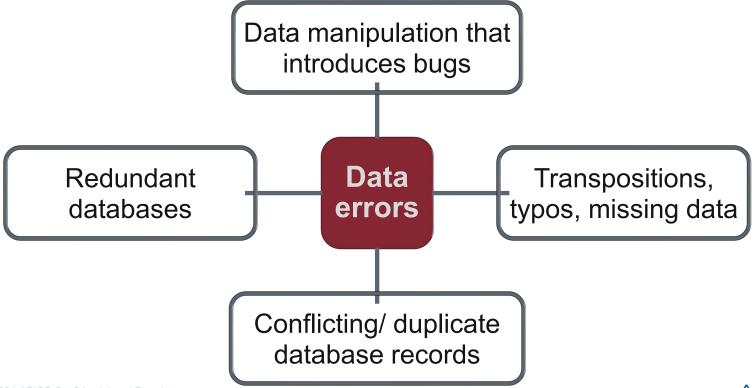
Measure error related to aggregation.


Data Aggregation

Smooths peaks and valleys: Pooling random variables reduces variance of aggregated variable.

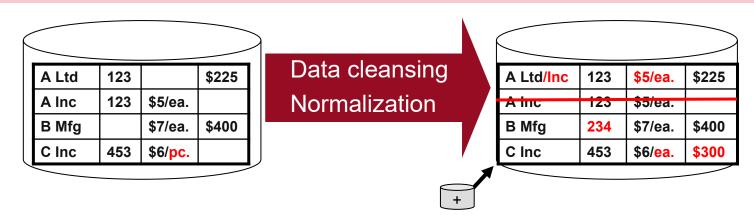
Easier to interpret less data.

Decision Support Systems (DSS)



Big Data and Data Analytics

- Big data
 - Massive amount of structured and unstructured data
 - Identify problem areas in supply chain early
 - How best to collect, use, and leverage?
- Data acquisition and analytics goal: Seamless links among processes and partners
 - Collecting information
 - Timely, controlled access
 - Reducing visibility gaps
 - Improving planning effectiveness
 - Ensuring and maintaining data accuracy


Causes of Errors

Ways to Improve Data Accuracy

- Sharing POS/transaction data across SC
- Real-time transfer when feasible
- Immediate data entry/automation if feasible

Maintaining Data Accuracy

Role-based policies, procedures

Software limits for adding, deleting, modifying

Data maintenance and continuous user training

CSCP CERTIFIED SUPPLY CHAIN PROFESSIONAL

SECTION C: SUPPLY CHAIN METRICS AND REPORTS

Module 2, Section C

Section C Introduction

Section C Key Processes:

- Develop and maintain reports, analytics, and metrics.
 - Incorporate supply chain operations reference (SCOR) metrics.
 - Utilize dashboards and balanced scorecards.
 - Define financial metrics and reports.
 - Define operational metrics and reports.

Section C Topics:

- Topic 1: Supply Chain Metrics, Reports, and SCOR
- Topic 2: Financial and Operational Metrics and Reports

Topic 1: Supply Chain Metrics, Reports, and SCOR

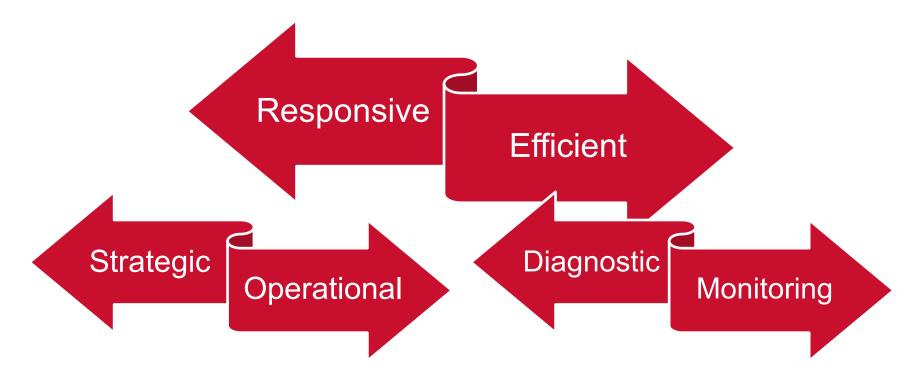
Measuring Performance

Performance Measures

- You get what you measure
- Objective, consistent, and quantified
- Measure at least 2 parameters (e.g., quality, time)
- Set targets to gauge relative success
- Customize

Internal Measurement Benefits

Control of processes and employees


Reporting to managers and external sources

Communication of expectations and problems

Learning and continuous improvement

Metric Selection Framework

Balanced Scorecard (BSC)

Customer Perspective

Present performance, future prospects

Business Process Perspective

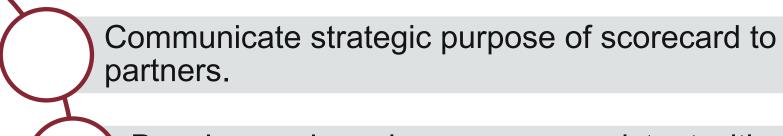
Productivity, prospecting, flexibility, etc.

Goal	Measure	Target	Actual

Innovation & Learning Perspective

Training and product development

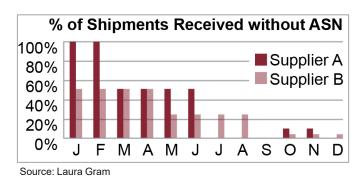
Goal	Measure	Target	Actual


Financial Perspective

Traditional, historical only, necessary

Goal	Measure	Target	Actual

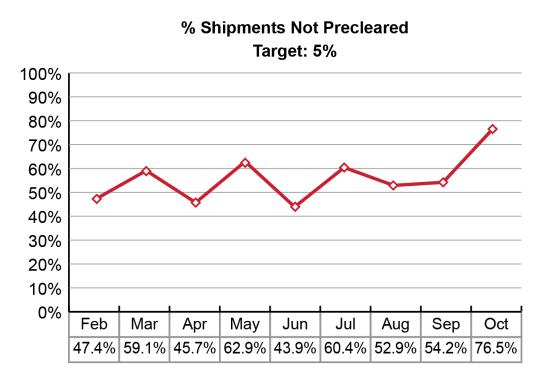
Key Elements in Balanced Scorecard (BSC) Initiative


Develop goals and measures consistent with internal and SC strategies.

Create schedules and assign responsibilities.

Custom Scorecard for 3PL (Service Quality)

Category		Jan	Feb
ASN Compliance			
% Shipments Received Without ASN: Supplier A	0%	100%	100%
% Shipments Received Without ASN: Supplier B		50%	50%
Inventory Count			
# of Parts Physically Counted	_	28	28
Inventory Accuracy Based on Physical Count	100%	80%	85%

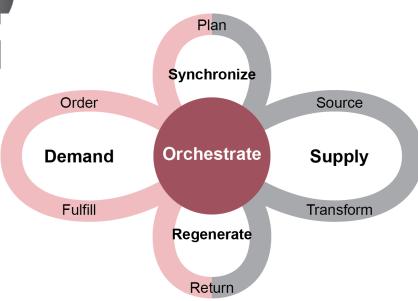


Source: Laura Gram

Performance Metrics

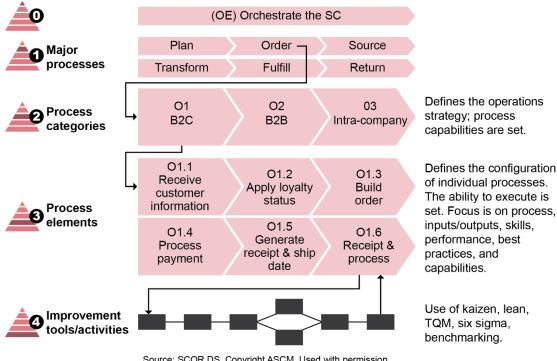
Average actual is about 50%, target is 5%, so:

- Review
 measurement and
 target to see if
 accurate and feasible
- Mandate supplier process correction and/or set more realistic target.



SCOR DS

Source: ASCM, "Introduction to Supply Chain Management Using SCOR." Available from SCOR-DS website. Used with permission.


- Moving beyond linear supply chain depictions to supply networks
- Never-ending flow of processes with no artificial starts or ends

Source: Copyright ASCM. Used with permission.

SCOR DS Hierarchical Process Model

- Performance: levels 1 to 3 in KPI tree
- Level 4 is specified by organization but linked to higher levels

Source: SCOR DS. Copyright ASCM. Used with permission.

SCOR DS Four Major Sections

Performance

- Supply chain strategy attributes (e.g., reliability, agility)
- KPI tree with related metrics

Processes

- Management process standard descriptions
- As-is, what-if, and to-be states

Practices

- Unique way to configure process
- Pillars
 - Analytics and technology (BP.049 Lean Planning)
 - Process (BP.009 Kanban)
 - Organization (BP.160 Lean)

People

- Standard skill definitions, experiences, and training
- Competency levels
 - Novice
 - Beginner
 - Competent
 - Proficient
- Expert

Learning How to Use SCOR DS for Transformations

- SCOR DS scope: order entry through paid invoice
- Learn more at SCOR DS website (www.scor.ascm.org).
- Study and adapt standard process workflows to needs:

Source: ASCM, "P1.1 Capture External Market Signals." Available from SCOR DS web site.

Used with permission.

SCOR DS Resilience Performance Attributes

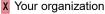
Performance Attribute	Definition				
Reliability (RL)	"The ability to perform tasks as expected. Reliability focuses on the predictability of the outcome of a process. Typical metrics for the Reliability attribute include delivering a product on time, in the right quantity, and at the right quality level."				
Responsiveness (RS)	"The speed at which tasks are performed and the speed at which a supply chain provides products to the customer. Examples include cycle-time metrics."				
Agility (AG)	"The ability to respond to external influences and marketplace changes to gain or maintain a competitive advantage."				

SCOR DS Economic Performance Attributes

Performance Attribute	Definition
Costs (CO)	"The cost of operating the supply chain processes. This includes labor costs, material costs, and management and transportation costs."
Profit (PR)	"The Profit attribute describes the financial benefit realized when the revenue generated from the business activity exceeds the expenses, costs, and taxes involved in sustaining the activity."
Assets (AM)	"The ability to efficiently utilize assets. Assets' strategies in a supply chain include inventory reduction and insourcing rather than outsourcing."

SCOR DS Sustainability Performance Attributes

Performance Attribute	Definition
Environmental (EV)	"The Environmental attribute describes the ability to operate the supply chain with minimal environmental impact, including materials, water, and energy."
Social (SC)	"The Social attribute describes the ability to operate the supply chain aligned with the organization's social values, including diversity and inclusion, and training metrics."



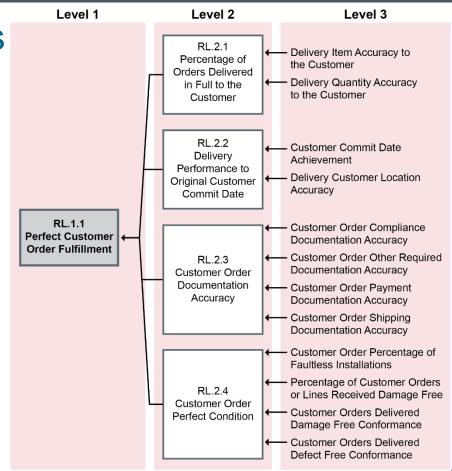
Benchmarking Tools: SCORmark example

- Versus competitors
 - Superior: >90%
 - Advantage: >70%
 - Parity: > 50%
- Benchmark metrics readily available, e.g.,
 - SCORmark:

 Compare against
 1,000
 organizations and
 2,000 supply
 chains.

Attribute	Metrics	Target Performance	Your Organization	Parity (50%)	Advantage (70%)	Superior (90%)	Gap to Target
Reliability	Perfect customer order fulfillment	Advantage	70%	X 77%	85%	93%	-15%
Responsiveness	Customer order fulfillment cycle time	Parity	6	9.1	7 X	4	3.1
Agility	Supply chain agility, strategic (days)	Parity	35	X 30	25	20	-5
Cost	Total supply chain management cost (% of revenue)	Advantage	8%	8.70% <mark>X</mark> L	5%	2.40%	-3%
Profitability	EBIT (as a % of revenue)	Parity	16%	14%	X 17% J	20%	2%
Assets	Cash-to-cash cycle time (days)	Superior	52	55.4 X	30.5		-52
Environmental	Waste generated (metric tons)	Parity	14.3	X 13.4	11.2	9.2	-0.9
Social	Training (hours per year)	Advantage	80	X 82.1	91.5	100.1	-11.5

Source: Adapted from SCOR-Professional Training. Used with permission. Values are for example only.



SCOR DS Performance Metrics

Resilience	Economic	Sustainability
 Reliability Perfect customer order fulfillment Perfect supplier order fulfillment Perfect return order fulfillment 	CostsTotal supply chain management costCost of goods sold	 Environmental Materials used Energy consumed Waste generated
Responsiveness • Customer order fulfillment cycle time	 Profit Earnings before interest and taxes (EBIT) as a percent of revenue Effective tax rate 	Waste generated
AgilitySupply chain agility (strategic or operational)	Assets Cash-to-cash cycle time Return on fixed assets Return on working capital	SocialDiversity and inclusionWage levelTraining

SCOR DS KPI Trees

Performance Targets and SCOR DS

Speed (SCOR DS responsiveness)

 Customer query time, order lead time, actual vs. theoretical lead time, cycle time, minimum and average delivery time

Dependability (SCOR DS reliability)

 Percent orders delivered late, average lateness, proportion in stock, mean deviation from promised arrival

Flexibility (SCOR DS agility)

 Time to develop new products, range of products, machine changeover time, average batch size

Quality (SCOR DS reliability)

 Number of defects per unit, level of customer complaints, scrap level, warranty claims, MTBF, customer satisfaction

Cost (SCOR DS cost and assets)

 Efficiency, variance vs. budget, value added, labor productivity, cost per operation hour, resource utilization

Perfect Customer Order Fulfillment

 $Perfect \ Customer \ Order \ Fulfillment = \frac{Total \ Perfect \ Orders}{Total \ Number \ of \ Orders}$

Responsiveness: Customer Order Fulfillment Cycle Time

- Customer Order Fulfillment Cycle Time =
 Sum of Actual Cycle Times for
 All Orders Delivered
 Total Number of Orders Delivered
- Customer Order Fulfillment Cycle Time =
 Order Fulfillment Process Time + Order Fulfillment Dwell
 Time

Agility

- Strategic supply chain agility (days)
 - Number of days to meet a 25% unplanned change in demand
 - Sum planned lead times for source, transform, order, fulfill, and plan
- Operational supply chain agility (% increase or decrease)
 - Sustained percentage increase or decrease in quantities that can be sustained over operational planning horizon (30 to 60 days)
 - Assume no expedite costs
 - Operational Supply Chain Agility = $\frac{\text{New Planned Volume}}{\text{Original Planned Volume}}$

Costs

 Total Supply Chain Management Cost as Percent of Revenue =

(Order Management Costs + Material Acquisition Costs + Inventory Carrying Costs + Supply Chain Related Finance and Planning Costs + Total Supply-Chain-Related IT Costs)

Total Product Revenue

Cost of Goods Sold =

Direct Material Cost + Direct Labor Cost + Indirect Costs Related to Production (Overhead)

Profit

- Earnings Before Interest and Taxes as a Percent of Revenue = Revenue - COGS - Operating Expenses Revenue
- Effective Tax Rate
 - Average tax rate paid by organization
 - A tax-efficient supply chain can significantly impact this rate.

Assets

- Cash-to-Cash Cycle Time = Days' Sales Outstanding + Inventory Days of Supply – Days' Payables Outstanding
 - Days' Sales Outstanding = $\frac{\text{Five-Point Annual Average of Gross A/R}}{\left(\frac{\text{Total Gross Annual Sales}}{365 \text{ days}}\right)}$
 - Inventory Days of Supply =
 Five-Point Rolling Average of Gross Value of Inventory at Standard Cost

- Days' Payables Outstanding = $\frac{\text{Five-Point Rolling Average of Gross A/P}}{\left(\frac{\text{Total Gross Annual Material Purchases}}{365 \text{ days}}\right)}$

Assets

- Return on Fixed Assets =
 (Supply Chain Revenue Total Supply Chain Management Cost)
 Supply Chain Fixed Assets
- Return on Working Capital =
 (Supply Chain Revenue Total Supply Chain Management Costs)
 (Inventory + A/R A/P)

Sustainability Metrics

Environmental

- Materials Used = total weight or volume of materials used to produce and package main products and services
- Energy Consumed = in joules
- Water Consumed = in megaliters
- GHG Emissions = metric tons of equivalent CO2
- Waste Generated = total weight

Social

- Diversity and Inclusion =
 percentage of individuals in
 organization's governance bodies
 per gender, age group, and other
 diversity indicators
- Wage Level = ratio of entry-level wage by gender to minimum wage
- Training = number of hours

Digital Capabilities Model for Supply Networks

Capability	Description	SCOR DS Linkages
Connected customer	Inspire at start of customer life cycle; service at the end.	Order, orchestrate
Product development	Do proactive product life-cycle management.	Orchestrate
Synchronized planning	Leverage human and process capabilities for planning efficiency.	Plan, orchestrate
Intelligent supply	Leverage technologies to reduce costs.	Source, orchestrate
Smart operations	Digital transformation for connectivity, agility, and proactivity.	Transform, orchestrate
Dynamic fulfillment	Add order fulfillment speed and agility.	Fulfill, return, orchestrate

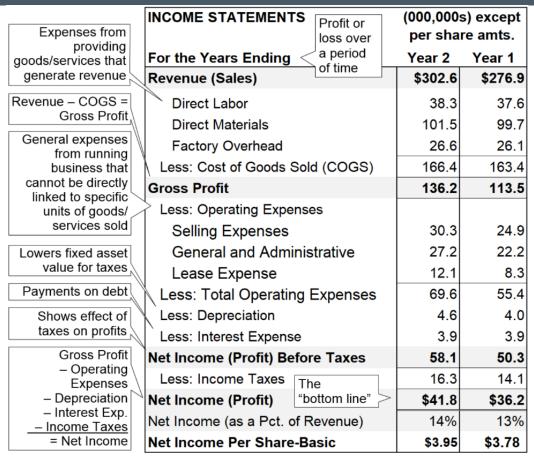
Standard Costing

A cost accounting system that uses cost units determined before production for estimating the cost of an order or product

COST = VOLUME × RATE

Balance Sheet for Two Years

Example: Buy house for \$200,000 with \$20,000 down


\$200,000 assets =\$180,000 liabilities +\$20,000 equity

What the	BALANCE SHEETS	√ Statement of		(000,000)
organization	December 31,	financial value at	Year 2	Year 1
owns	Assets	a point in time		
Assets expected	Current Assets	(end of year)		
to be converted to	Cash and Cash Equ	uivalents	\$96.5	\$56.3
cash within one	Inventory		59.9	60.4
year	Accounts Receivabl	le	48.4	44.3
Long-term assets	Total Current Assets		204.9	161.1
not easily	Fixed Assets			
converted to cash	Gross Property, Pla	nt, and Equipment	70.0	60.0
	Less: Accumulated	Depreciation	12.1	7.5
Amounts owed	Net Property, Plant,	and Equipment	57.9	52.5
to others	Total Assets	_	→ \$262.8	\$213.6
Amounts owed	Liabilities			
this year >	Current Liabilities			
Amounts owed	Accounts Payable		20.0	19.6
beyond one year	Short-Term Notes F	Payable	7.5	6.0
For the Committee	Total Current Liabilitie	es	27.5	25.6
Funds from owners and	Long Term Liabilities			
operations (what	Long-Term Debt	Assets = >	60.0	60.0
is left after	Total Liabilities	Liabilities +	87.5	85.6
liabilities are	Owners' Equity	Owners' Equity		
deducted)	Common Stock (Par	Value)	11.0	10.0
What owners	Additional Paid-In Ca	pital	66.0	54.0
have contributed	Retained Earnings		98.3	64.0
Reinvested funds	Total Owners' Equity		175.3	128.0
from operations	Total Liabilities and C	Dwners' Equity	→ \$262.8	\$213.6

Income Statement for Two Years

 Depreciation shown here will be added back on cash flow statement

Statement of Cash Flows for Two Years

- Cash pays the bills, debts, salaries, and dividends.
- Inventory is less liquid.

A viable firm needs positive cash flow from operations in most years.	CASH FLOW STATEMENTS	In Millions	In Millions (000,000)	
	Year — Change in cash	Year 2	Year 1	
	Operating Section balance over a period of time			
Depreciation is deducted on the income statement but doesn't reduce cash (added back).	After-Tax Net Income	\$41.8	\$36.2	
	Depreciation Add-Back	4.6	4.0	
	(Increase)/Decrease in Inventory	0.5	(8.6)	
	(Increase)/Decrease in Accounts Receivable	(4.1)	(4.1)	
Increase in inventory or accounts receivable reduces cash.	Increase/(Decrease) in Accounts Payable	0.4	1.8	
	Cash Flow from Operations	43.2	29.3	
Increase in accounts payable increases cash.	Investing Section			
	_ Capex Spend (Capital Expenditures)	(10.0)	(10.0)	
Increase in business investments decreases cash.	Cash Flow from Operations and Investment	33.2	19.3	
	Financing Section			
Increase in new debt or equity provides cash.	Additional Equity Capital	13.0	7.0	
	Less Dividends Paid	(7.5)	(5.0)	
Net Income +/– Change in (Δ) Operating +/– Δ Investing +/– Δ Financing + Beginning Cash = Ending Cash	Increase/(Decrease) in Long-Term Debt	-	-	
	Increase/(Decrease) in Short-Term Notes	1.5	(1.5)	
	Cash Flow from Operations, Investments,			
	and Financing	40.2	19 .8	
	Beginning Cash Balance	56.3	36.5	
	Ending Cash Balance	\$96.5	\$56.3	

Supply Chain Financial Metrics

Supply chain profit

Supply chain management cost reduction and efficiency efforts impact profit, e.g., Contribution Margin = Sales – Variable Costs.

Supply chain cost

Cost areas include order processing, inventory, transportation, warehousing and materials handling, and network integration.

Supply chain total cost

An aggregation of the costs of all organizations that participate in a given supply chain.

Altman Z-score

A combination of four or five weighted ratios to measure bankruptcy risk.

Customer creditworthiness

The goal of monitoring customer creditworthiness is to ensure that invoices are paid on time.

Operational Metrics: Day-to-Day Operations Check

Quality

- Accuracy
- Manufacturing goods to quality standards
- Avoidance of damage to goods
- Supplier Performance
 Index =
 Material Cost + Nonconformance Cost
 Material Cost

Productivity

- Output of production
- Resource inputs used as efficiently and effectively as possible

Asset Management

- Ability of organization to maximize its operational assets
- Primary concerns are inventory and facility capacity

