
MODULE 6: INVENTORY MANAGEMENT

Module 6: Inventory Management

Module 6 Overview

MODULE 6, SECTION A: INVENTORY MANAGEMENT IN LOGISTICS

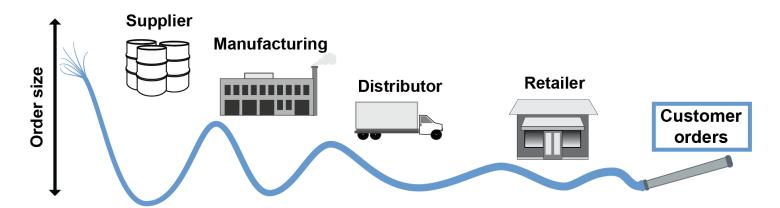
Inventory in the Supply Chain

Inventory to support

- Production
- Supporting activities
- Customer service

Suppliers

Raw materials or components **MRO** (maintenance, repair, operating supplies)



MRO

Bullwhip Effect

- Caused by repeated upstream communication and downstream logistics delays
- Primarily impacts make-to-stock environments

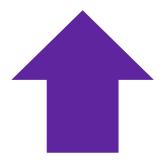
Stakeholder Perceptions of Inventory

Business leaders	J		
Financial managers	Keep value of inventory low as it affects business financials.		
Operations managers	Inventory is key to output; when low performance drops.		
Sales and marketing	Enough inventory to satisfy demand.		
Consumers	Right product in the right amount at the right time.		

Inventory and Time

Faster Inventory Turns Means Less Cash Investment

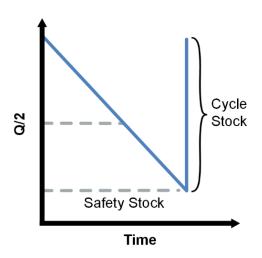
Find efficiencies and compress lead time. Use faster Reduce inventory lead time and safety transportation options. stock.



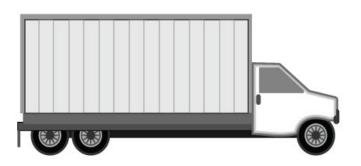
Demand Fulfillment

Costs associated with acquiring and holding inventory

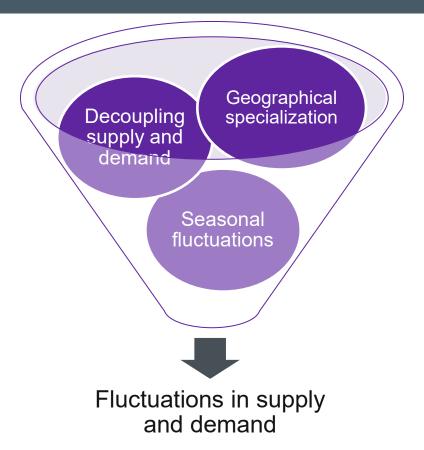
Profits received through fulfilling demand



Cycle and Pipeline Stock

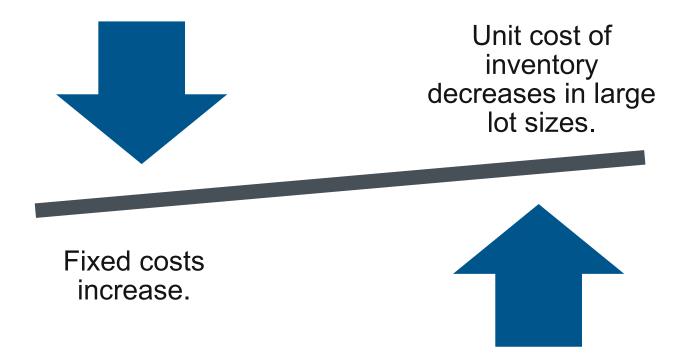

Cycle stock

Amount of inventory required to satisfy normal demand



Pipeline stock

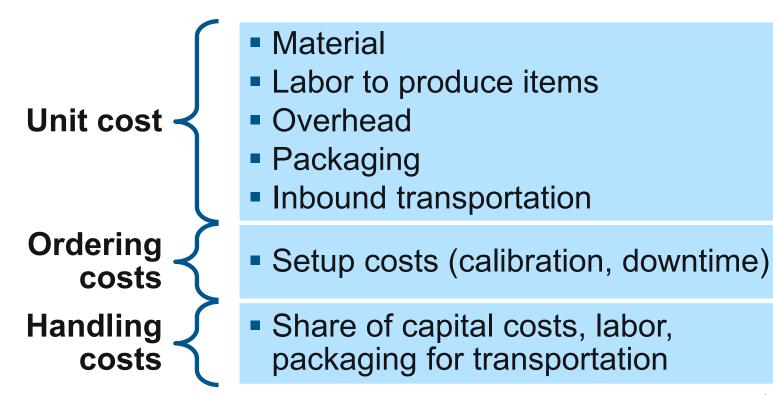
Amount of inventory in the transportation network and distribution system



Safety Stock and Hedge Inventory

Hedge inventory is used to buffer against events that may not happen.

Economies of Scale

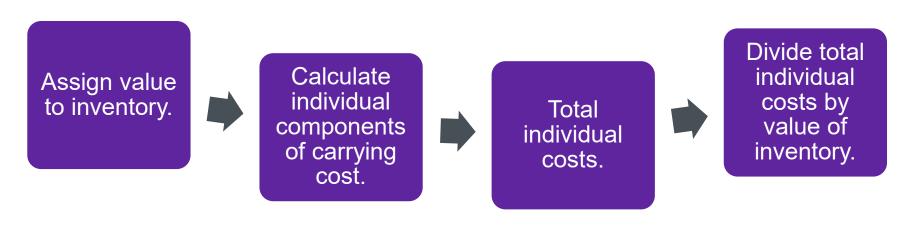


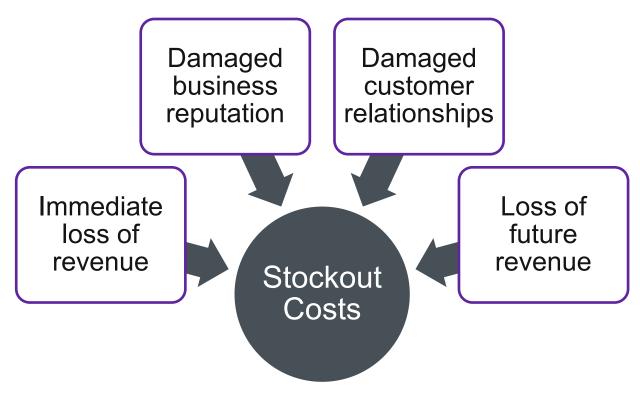
Inventory Costs

Acquisition Costs	Carrying Costs	Stockout Costs
 Unit cost Overhead costs Ordering cost Setup costs Handling cost 	Capital costStorageInsuranceTaxesIn-transit cost	 Immediate loss of revenue Damaged customer relations Damaged business reputation Lost future revenue

Acquisition Costs

Carrying Costs


"The cost of holding inventory, usually defined as a percentage of the dollar value of inventory per unit of time (generally one year)."


Calculating Carrying Cost

Carrying cost is indicated as a percentage of the value of inventory.

Stockout Costs

CETTIFIED IN LOGISTICS, TRANSPORTATION AND DISTRIBUTION

MODULE 6, SECTION B: INVENTORY CONTROL, STRATEGY, AND POLICY

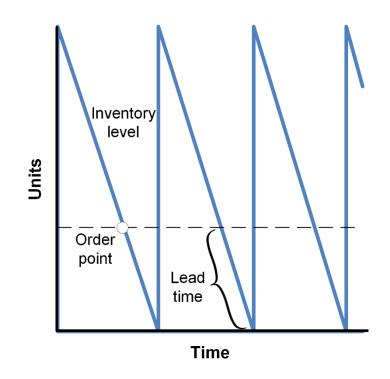
Demand Types

Independent demand

- Fixed order quantity
- Fixed order period

Dependent demand

- Components
- Kits


Dual demand

- Service
- Components

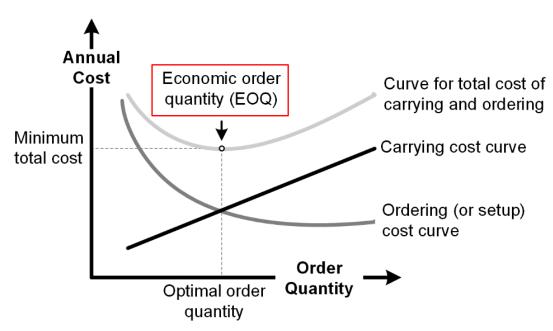
Fixed Order Quantity

- Uses an order point to trigger replenishment.
- Quantity of order remains the same.
- Time between orders (order period) may vary.

Order Point

Order Point = Anticipated Demand (D) × Lead Time (L)

Demand:

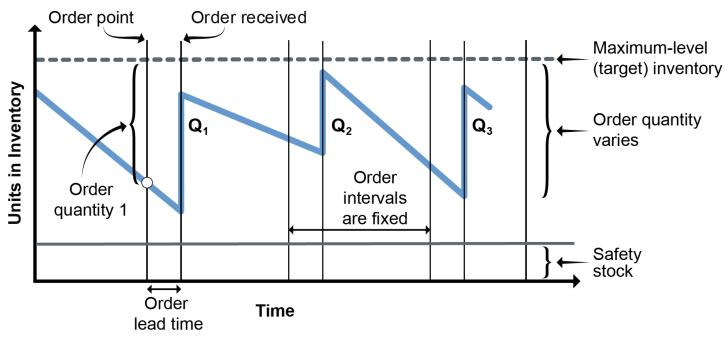

- Historical data
- Forecasts
- Analysis of current trends

Lead time:

- Inventory review
- Prepare and submit orders
- Supplier reviews and processes
- Transit time
- Receipt, check, and stock

Economic Order Quantity (EOQ)

Source: APICS Certified Supply Chain Professional Learning System, Version 4.0


$$EOQ = \sqrt{\frac{2AS}{IC}}$$

Where:

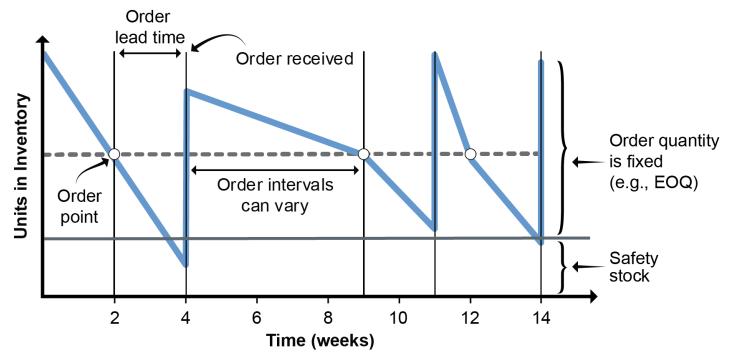
- A = Annual usage in units
- S = Ordering (or setup) costs in a currency amount
- I = Annual carrying cost
- C = Unit cost

Fixed Order Period

Source: APICS Certified Supply Chain Professional Learning System, Version 4.0

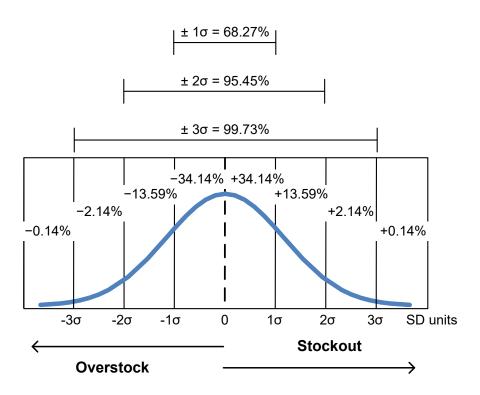
Min-Max Systems

- Type of order point replenishment system
- Hybrid approach to inventory control
- Variable order quantity
- Minimum (min) is the order point.
- Maximum (max) is the "order up to" inventory target level.



Just in Time (JIT)

- Aims at reducing waste
- Works to reduce uncertainty of what to produce or what and how much to order



Effect of Uncertainty on Reorder Frequency

Standard Deviations in a Normal Distribution

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

Calculating Standard Deviation in Units

- This example: n =10-week period
- If a using a complete set of data, use n
- If using a sample to represent the whole, use n – 1

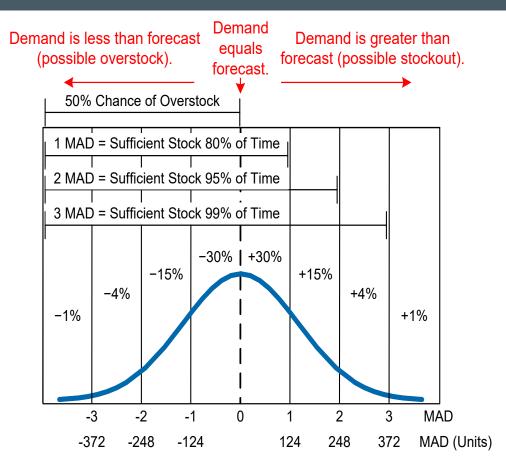
Week	Forecast	Actual	Absolute Deviation	Actual – Mean	(Actual – Mean) Squared
1	1,000	1,100	100	24	576
2	1,000	950	50	-126	15,876
3	1,000	1,150	150	74	5,476
4	1,000	1,400	400	324	104,976
5	1,000	1,000	0	-76	5,776
6	1,000	900	100	-176	30,976
7	1,000	920	80	-156	24,336
8	1,000	1,300	300	224	50,176
9	1,000	990	10	-86	7,396
10	1,000	1,050	50	-26	676
Sum		10,760	1,240	•	246,240
Mean		1,076			
Sum of $(Actual - Mean)^2/n - 1$ 27,36					27,360
Standard deviation (square root of line above) 165.4					

Mean Absolute Deviation

$$MAD = \frac{\sum |A - F|}{n}$$

Where:

- ∑|A F| = Total of absolute forecast errors for the periods
- n = Number of periods

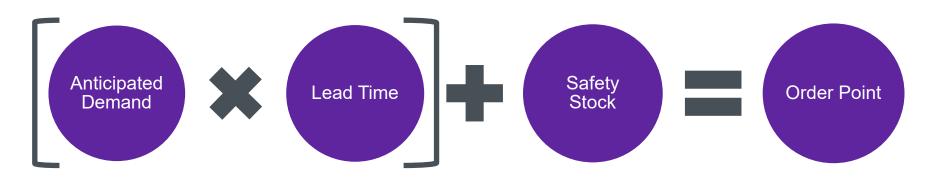

Week	Forecast	Actual	Absolute Deviation
1	1,000	1,100	100
2	1,000	950	50
3	1,000	1,150	150
4	1,000	1,400	400
5	1,000	1,000	0
6	1,000	900	100
7	1,000	920	80
8	1,000	1,300	300
9	1,000	990	10
10	1,000	1,050	50
Sum			1,240
Mean absolute deviation (sum absolute deviation/n)			124

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

Normal Distribution Curve for MAD

- +/- 1 MAD: 60% of time
- +/- 2 MAD: 90% of time
- +/- 3 MAD: 98% of time

Calculating Safety Stock from Service Level


- Safety factor table:
- For example, for 90% service level, using SD, safety stock level should be: 165.4 SD in units x 1.28 = 212 units

Percentile Customer Service Level	SD Units × Factor Below	MAD Units × Factor Below	
85.00	1.04	1.30	
89.44	1.25	1.56	
90.00	1.28	1.60	
93.32	1.50	1.88	
95.00	1.65	2.06	
97.72	2.00	2.50	
98.00	2.05	2.56	

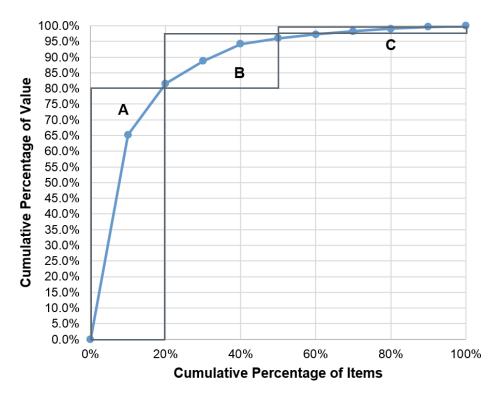
Calculating Safety Stock: Order Point

Either standard deviation or MAD may be used, but standard deviation is considered more accurate.

Vendor-Managed Inventory (VMI)

Increases the role of supplier

Can lead to stronger, more strategic relationships Decreases
vulnerabilities and
enhances
opportunities


Consignment Inventory

- Consignment is an issue of ownership of stored inventory.
- The customer does not assume ownership of the goods upon receipt.
- Customer pays for the goods only when they are withdrawn from inventory.
- Advantage to buyer = avoids investing capital in stock.
- Advantage to seller = guarantees seller's products (vs. competitors) are used in process.

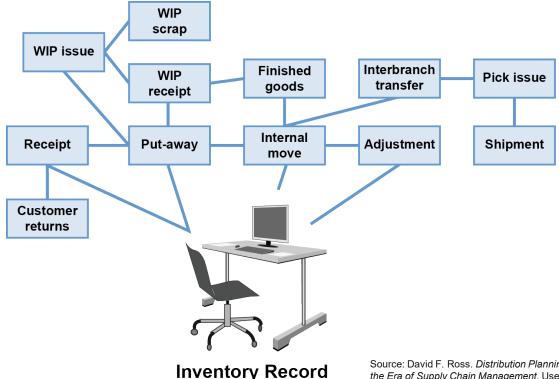
Topic 3: ABC Analysis of Inventory

ABC Analysis of Inventory

Topic 3: ABC Analysis of Inventory

ABC Analysis by Revenue

Item Code	Annual Revenue	% Annual Revenue	% Cumulative Revenue	% Items	ABC Class
01A	40,000	40.0	40.0	9	Α
14V	20,000	20.0	60.0	18	Α
78Y	10,000	10.0	70.0	27	Α
98H	8,000	8.0	78.0	36	В
09P	5,000	5.0	83.0	45	В
65T	4,000	4.0	87.0	55	В
23W	3,000	3.0	90.0	64	В
12Q	4,000	4.0	94.0	73	С
99M	3,000	3.0	97.0	82	С
88B	2,500	2.5	99.5	91	С
04Z	500	0.5	100.0	100	D/
TOTAL	US\$100,000	100%			


Dead stock (D) or slow-moving, inactive, or new with no sales history:

 No sales during 12month period

Topic 4: Transaction Management, Inventory Review, and Inventory Auditing

Inventory Transaction Points

Source: David F. Ross. Distribution Planning and Control—Managing in the Era of Supply Chain Management. Used with permission.

Topic 4: Transaction Management, Inventory Review, and Inventory Auditing

Inventory Review Approaches

Periodic inventory review

Continuous inventory review

 Checked at designated intervals to see if order points have been triggered.

Checked whenever:

- A change in inventory level occurs.
- Order point is reached.
- Restocking order released.

Topic 4: Transaction Management, Inventory Review, and Inventory Auditing

Inventory Auditing

GOAL: To measure, confirm, and improve, if necessary, inventory accuracy.

Approaches to cycle counting:

ABC classification

Zone method

Just-beforeorder replenishment

Demand order pick

Topic 5: Inventory Performance Metrics

Inventory Control Metrics

- Days' Inventory Outstanding (DIO) = $\frac{\text{Inventory on Hand}}{\text{Average Daily Use}}$
- Weeks of Supply = $\frac{\text{Inventory on Hand}}{\text{Average Weekly Use}}$

Reduction of inventory results in:

- Reduction in carrying cost
- Reduction in risk of excess inventory
- Reduction in risk of obsolete inventory
- Increase in available cash

Topic 5: Inventory Performance Metrics

Inventory Reduction Methods

More accurate forecasting

Reducing usage and lead times

Recalculating order quantities

Reducing safety stocks

ABC classification

Cycle counting

Monitoring deliveries

VMI or consignment

Topic 5: Inventory Performance Metrics

Calculating Inventory Turnover Rate (Variants)

Inventory Turnover =

COGS

Average Inventory Valued at Cost During Period

Sales Revenue

Average Inventory Valued at Selling Price During Period

Units Sold

Average Unit Inventory During Period

