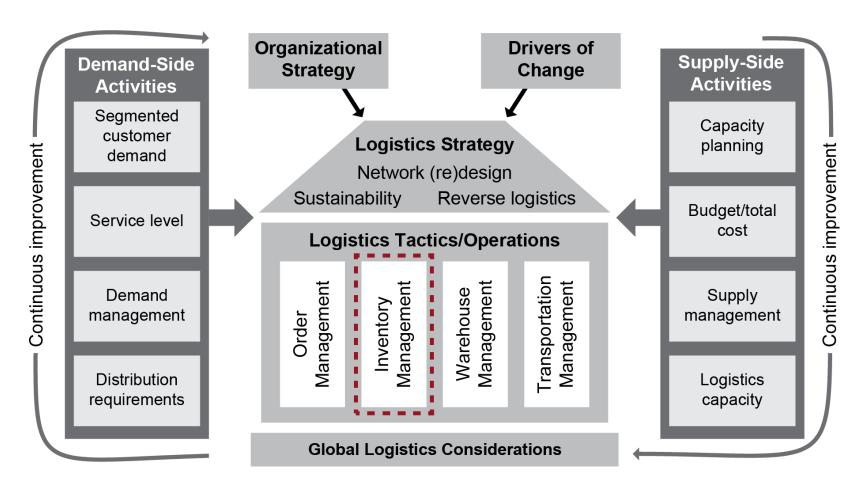
CERTIFIED IN LOGISTICS, TRANSPORTATION AND DISTRIBUTION


MODULE 6: INVENTORY MANAGEMENT

Module 6: Inventory Management

Module 6 Overview

CERTIFIED IN LOGISTICS, TRANSPORTATION AND DISTRIBUTION

MODULE 6, SECTION A: INVENTORY MANAGEMENT IN LOGISTICS

Inventory in the Supply Chain

Suppliers

Raw materials or components

MRO (maintenance, repair, operating supplies) In-transit or pipeline

Manufacturer or Fabricator

Work in process
Finished goods
MRO

Raw materials

Distribution Centers

Packaged goods

Bulk packaged goods

Cycle stock

Postponement parts

MRO

In-transit or pipeline

In-transit or pipeline

Retail Outlet

Packaged goods

MRO

Bullwhip Effect

- Caused by repeated upstream communication and downstream logistics delays
- Primarily impacts make-to-stock environments

Stakeholder Perceptions of Inventory

Business leaders

Cost that may limit invest-ments in new opportunities and growth.

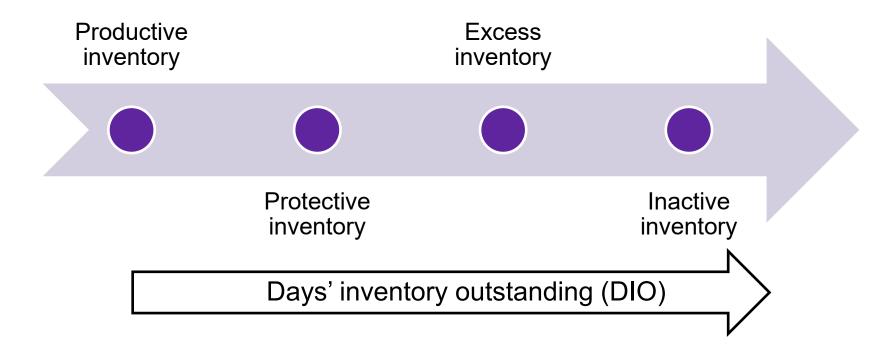
Financial managers

Keep value of inventory low as it affects business financials.

Operations managers

Inventory is key to output; when low performance drops.

Sales and marketing


Enough inventory to satisfy demand.

Consumers

Right product in the right amount at the right time.

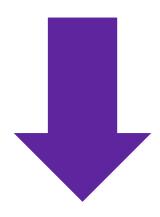
Inventory and Time

Module 6, Section A ■ 7

Faster Inventory Turns Means Less Cash Investment

Find efficiencies and compress lead time.

Use faster transportation options.

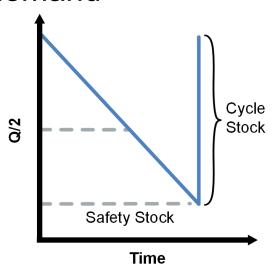

Module 6, Section A ■ 8

Reduce inventory lead time and safety stock.

Demand Fulfillment

Costs
associated with
acquiring and
holding inventory

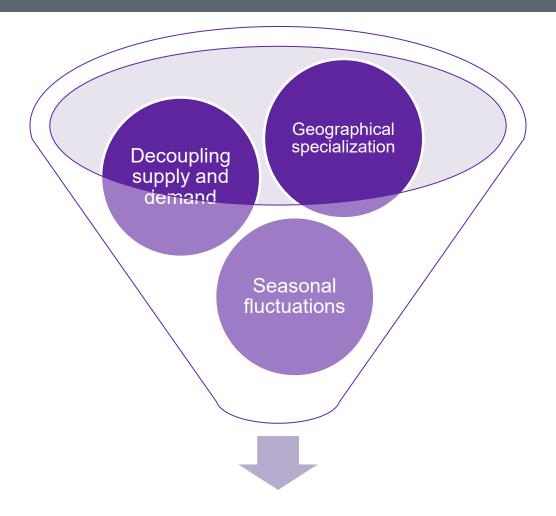
Profits received through fulfilling demand



Cycle and Pipeline Stock

Cycle stock

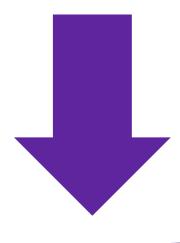
 Amount of inventory required to satisfy normal demand



Pipeline stock

 Amount of inventory in the transportation network and distribution system

Fluctuations in supply and demand



Safety Stock and Hedge Inventory

Hedge inventory is used to buffer against events that may not happen.

Economies of Scale

Unit cost of inventory decreases in large lot sizes.

Fixed costs increase.

Inventory Costs

Acquisition Costs	Carrying Costs	Stockout Costs
 Unit cost Overhead costs Ordering cost Setup costs Handling cost 	Capital costStorageInsuranceTaxesIn-transit cost	 Immediate loss of revenue Damaged customer relations Damaged business reputation Lost future revenue

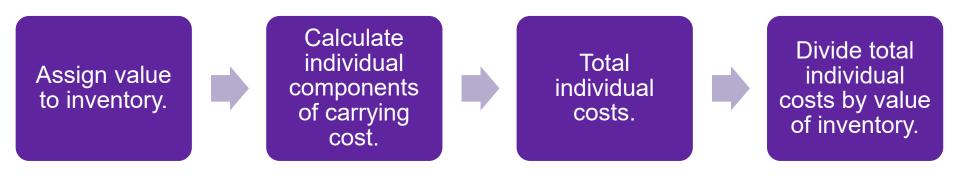
Acquisition Costs

 Share of capital costs, labor, packaging for transportation

costs

Handling

Carrying Costs



"The cost of holding inventory, usually defined as a percentage of the dollar value of inventory per unit of time (generally one year)."

Calculating Carrying Cost

 Carrying cost is indicated as a percentage of the value of inventory.

Stockout Costs

Damaged business reputation

Damaged customer relationships

Immediate loss of revenue

Stockout Costs Loss of future revenue

CERTIFIED IN LOGISTICS, TRANSPORTATION AND DISTRIBUTION

MODULE 6, SECTION B: INVENTORY CONTROL, STRATEGY, AND POLICY

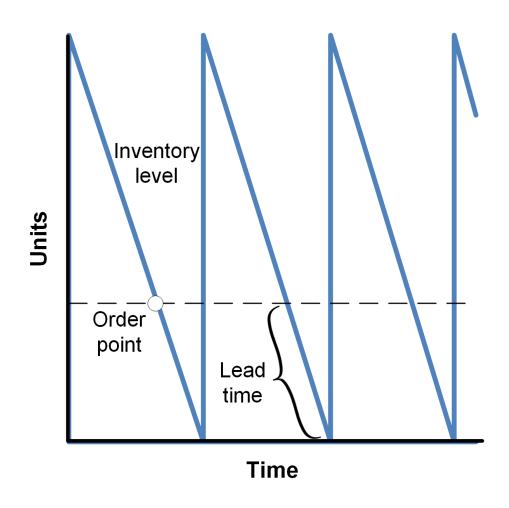
Demand Types

Independent demand

- Fixed order quantity
- Fixed order period

Dependent demand

- Components
- Kits


Dual demand

- Service
- Components

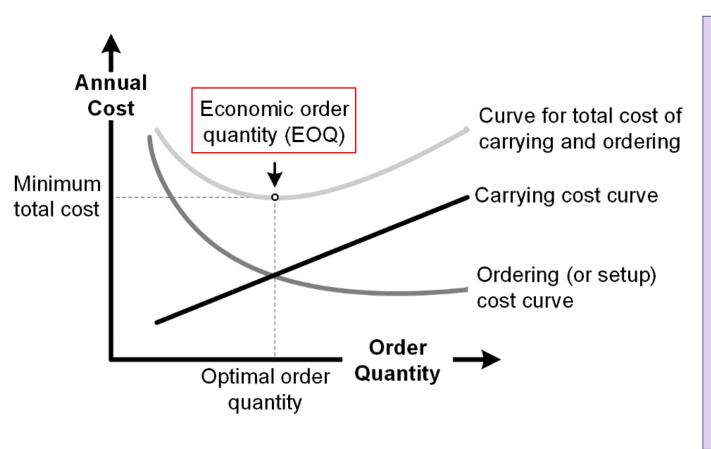
Fixed Order Quantity

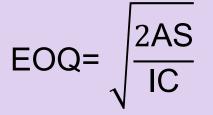
- Uses an order point to trigger replenishment.
- Quantity of order remains the same.
- Time between orders (order period) may vary.

Order Point

Demand:

- Historical data
- Forecasts
- Analysis of current trends


Lead time:

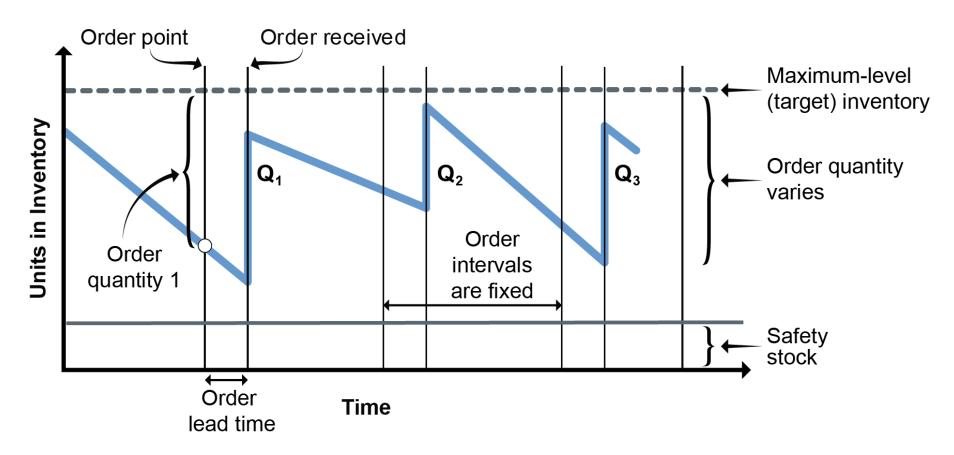

- Inventory review
- Prepare and submit orders
- Supplier reviews and processes
- Transit time
- Receipt, check, and stock

Order Point = Anticipated Demand (D) \times Lead Time (L)

Economic Order Quantity (EOQ)

where:

A = Annual usage in units


S = Ordering (or setup) costs in a currency amount

I = Annual carrying cost

C = Unit cost

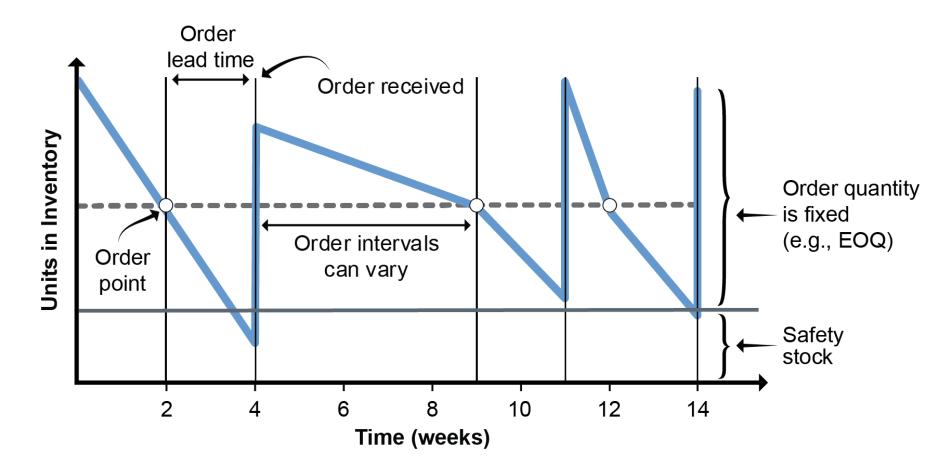
Fixed Order Period

Source: APICS Certified Supply Chain Professional Learning System, Version 4.0

Min-Max Systems

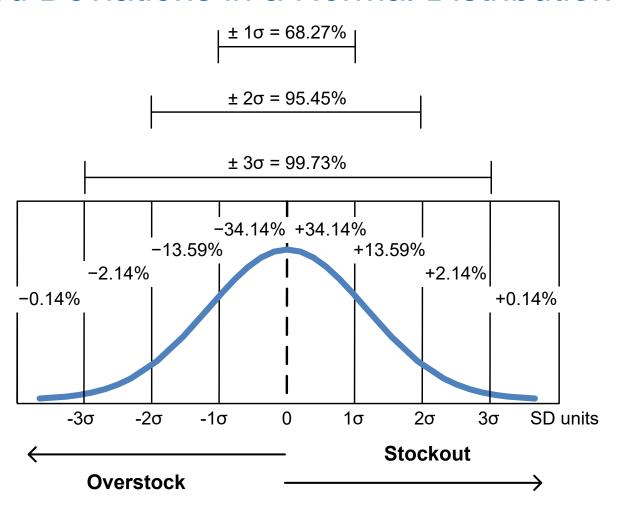
- Type of order point replenishment system
- Hybrid approach to inventory control
- Variable order quantity

- Minimum (min) is the order point.
- Maximum (max) is the "order up to" inventory target level.


Just in Time (JIT)

- Aims at reducing waste
- Works to reduce uncertainty of what to produce or what and how much to order

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty


Effect of Uncertainty on Reorder Frequency

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

Standard Deviations in a Normal Distribution

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

Calculating Standard Deviation in Units

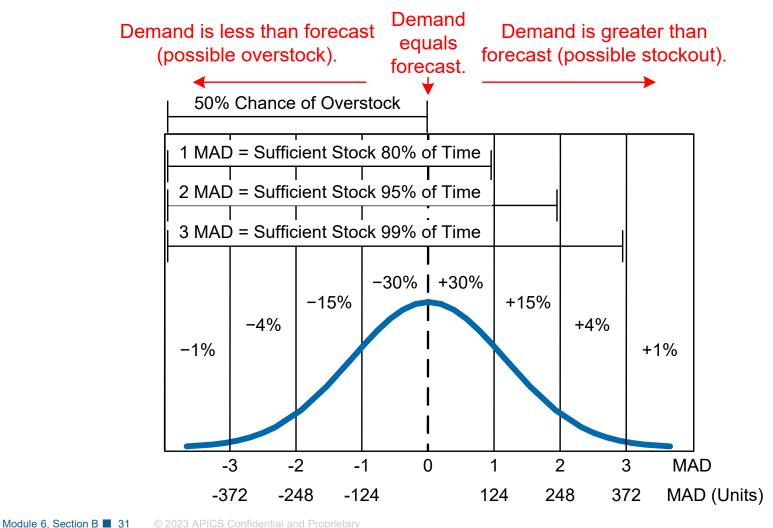
	Week	Forecast	Actual	Absolute Deviation	Actual – Mean	(Actual – Mean) Squared
	1	1,000	1,100	100	24	576
	2	1,000	950	50	-126	15,876
	3	1,000	1,150	150	74	5,476
	4	1,000	1,400	400	324	104,976
n = 10-week period	5	1,000	1,000	0	–76	5,776
	6	1,000	900	100	–176	30,976
	7	1,000	920	80	-156	24,336
*If using a sample use n – 1 instead		1,000	1,300	300	224	50,176
	9	1,000	990	10	-86	7,396
	10	1,000	1,050	50	–26	676
	Sum		10,760	1,240		246,240
	Mean		1,076			
	Sum of (Actual – Mean) ² /n – 1					27,360
	Standard deviation (square root of line above)					165.4

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

Mean Absolute Deviation

$$MAD = \frac{\sum |A - F|}{n}$$

Where:


- $\sum |A F| = \text{Total of absolute}$ forecast errors for the periods
- n = Number of periods

Week	Forecast	Actual	Absolute Deviation
1	1,000	1,100	100
2	1,000	950	50
3	1,000	1,150	150
4	1,000	1,400	400
5	1,000	1,000	0
6	1,000	900	100
7	1,000	920	80
8	1,000	1,300	300
9	1,000	990	10
10	1,000	1,050	50
Sum			1,240
Mean absolute deviation (sum absolute deviation/n)			

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

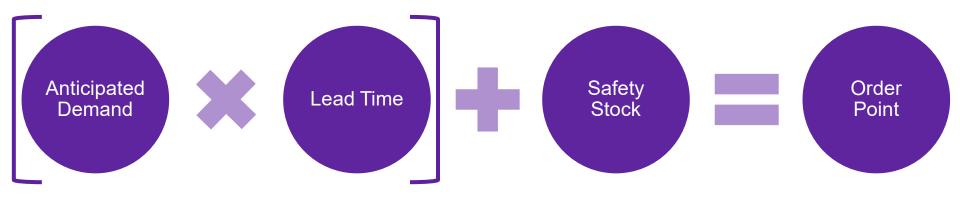
Normal Distribution Curve for MAD

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

Calculating Safety Stock from Service Level

Safety Factor Table

Percentile Customer Service Level	SD Units × Factor Below	MAD Units × Factor Below
85.00	1.04	1.30
89.44	1.25	1.56
90.00	1.28	1.60
93.32	1.50	1.88
95.00	1.65	2.06
97.72	2.00	2.50
98.00	2.05	2.56


For example:

For 90% service level, using SD, the safety stock level should be: $165.4 \times 1.28 = 212$

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

Calculating Safety Stock: Order Point

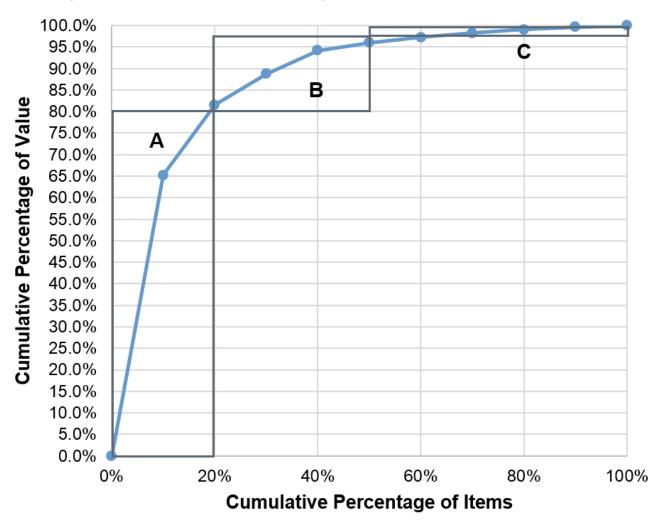
Either standard deviation or MAD may be used, but remember that standard deviation is considered to be more accurate.

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

Vendor-Managed Inventory (VMI)

- Increases the role of supplier
- Can lead to stronger, more strategic relationships
- Decreases vulnerabilities and enhances opportunities

Topic 2: Managing Exceptions, Anomalies, Constraints, and Conditions of Uncertainty

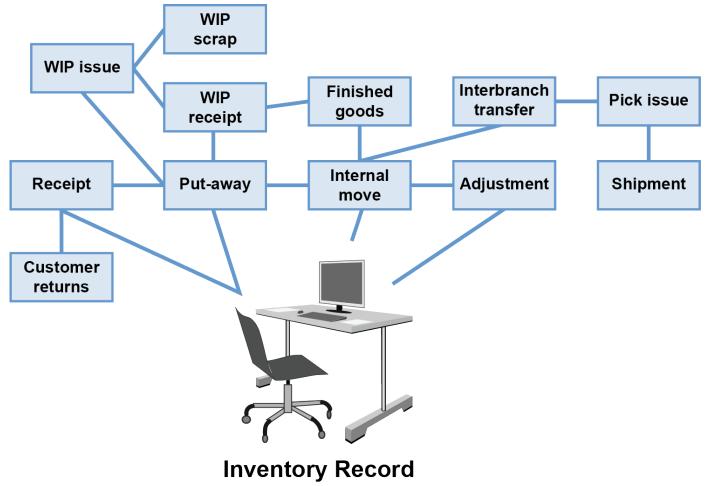

Consignment Inventory

- Consignment is an issue of ownership of stored inventory.
- The customer does not assume ownership of the goods upon receipt.
- Customer pays for the goods only when they are withdrawn from inventory.
- Advantage to buyer = avoids investing capital in stock.
- Advantage to seller = guarantees seller's products (vs. competitors) are used in process.

Topic 3: ABC Analysis of Inventory

ABC Analysis of Inventory

Topic 3: ABC Analysis of Inventory


ABC Analysis by Revenue

Item Code	Annual Revenue	% Annual Revenue	% Cumulative Revenue	% Items	ABC Class	
01A	40,000	40.0	40.0	9	Α	
14V	20,000	20.0	60.0	18	Α	Dead stock (D):
78Y	10,000	10.0	70.0	27	Α	(or slow-moving,
98H	8,000	8.0	78.0	36	В	inactive, or new
09P	5,000	5.0	83.0	45	В	with no sales
65T	4,000	4.0	87.0	55	В	history)
23W	3,000	3.0	90.0	64	В	No sales during
12Q	4,000	4.0	94.0	73	С	12-month period
99M	3,000	3.0	97.0	82	С	
88B	2,500	2.5	99.5	91	С	
04Z	500	0.5	100.0	100	D	
TOTAL	US\$100,000	100%				_

Topic 4: Transaction Management, Inventory Review, and Inventory Auditing

Inventory Transaction Points

Topic 4: Transaction Management, Inventory Review, and Inventory Auditing

Inventory Review Approaches

Periodic inventory review

Checked at designated intervals to see if order points have been triggered.

Continuous inventory review

Checked whenever:

- A change in inventory level occurs.
- Order point is reached.
- Restocking order released.

Inventory Auditing

Approaches to cycle counting:

ABC classification

Zone method

Just-beforeorder replenishment

Demand order pick

GOAL: To measure, confirm, and improve, if necessary, inventory accuracy.

Topic 5: Inventory Performance Metrics

Inventory Control Metrics

Days' Inventory Outstanding (DIO) =
$$\frac{\text{Inventory on Hand}}{\text{Average Daily Use}}$$

Weeks of Supply =
$$\frac{\text{Inventory on Hand}}{\text{Average Weekly Use}}$$

Reduction of inventory results in:

- Reduction in carrying cost
- Reduction in risk of excess inventory
- Reduction in risk of obsolete inventory
- · Increase in available cash

Topic 5: Inventory Performance Metrics

Inventory Reduction Methods

More accurate forecasting

Reducing usage and lead times

Recalculating order quantities

Reducing safety stocks

ABC classification

Cycle counting

Monitoring deliveries

VMI or consignment

Topic 5: Inventory Performance Metrics

Calculating Inventory Turnover Rate

COGS

Average Inventory Valued at Cost During Period

Sales Revenue

Average Inventory Valued at Selling Price During Period

Units Sold

Average Unit Inventory During Period

